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ABSTRACT

Many Monte Carlo simulation problems lend themselves readily
to the application of variance reduction techniques. These techniques
can result in great improvements in simulation efficiency. This docu-
ment describes the basic concepts of variance reduction (Part I), and a
methodology for application of variance reduction techniques is presented
in Part II. Appendices include the basic analytical expressions for
application of variance reduction schemes as well as an abstracted
bibliography.

The techniques considered here irclude importance sampling,
Rugsian roulette and splitting, systematic sampling, stratified sampling,
expected values, statistical estimation, correlated sampl:..g, history
reanalysis, control variates, antithetic variates, regression, sequential
sampling, adjoint formulation, transformations, orthonormal and con-
ditional Monte Carlo. Emphasis has been placed on presentation of the
material for application by the general user. This has been accomplished
by presenting a step by step procedure for selection and application of
the appropriate technique(s) for a given problem.
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EXECUTIVE SUMMARY

Monte Carlo simulationis one of the most powerful and commonly
used techniques for analyzing complex physical problems. Applications can
be found in many diverse areas from radiation transport to river basin
modeling. Important Navy applications include analysis of antisubmarine
warfare exercises and operations, prediction of aircraft or sensor perform-
ance, tactical analysis, and matrix game solutions where random processes
are considered to be of particular importance. The range of applications has
been broadening and the size, complexity, and computational effort required
have been increasing. However, such developments are expected and desir-
able since increased realism is concomitant with more complex and extensive
problem descriptions. .

In recognition of such trends, the requirements for improved simula-
tion techniques are becoming more pressing. Unfortunately, methods for
achieving greater efficiency are frequently overlooked in developing simula-
tions. This can generally be attributed to one or more of the following reasons:

e Analysts usually seek advanced computer systems to perform
more complex simulation studies by exploiting increased
speed and/or storage capabilities. This is often achieved
at a considerably increased expense.

e Many efficient simulation methods have evolved for specialized
applications. For example, some of the most impressive
Monte Carlo techniques have been developed in radiation trans-
port, a discipline that does not overlap into areas where even
a small number of simulation analysts are working.

e Known techniques are not developed to the point where they can
be easily understood or applied by even a small fraction of the
analysts who are performing simulation studies or developing
simulation models.



In addition to the above reasons, comprehensive references describing ef-
ficient methodologies to improve Monte Carlo simulation are not available.
It is the intent of these volumes to help alleviate the above shortcomiungs in

Monte Carlo simulation.

This document is the third of three volumes which present techniques
and methods for developing efficient Monte Carlo simulations., Each volume
is essentially a self-contained discussion of useful techniques which can be
applied in reducing computational effort in one of the following three major
aspects of Monte Carlo simulation:

e Selecting Probability Distributions - Volume I

¢ Random Number Generation For Selected Prooability
Distributions - Volume II

@ Variance Reduction - Volume III

The purpose of these volumes is to provide guidance in developing
Monte Carlo simulations that accurately reflect the behavior of various char-
acteristics of the system being simulated and are most efficient in terms of
computational effort. The basic intent is to provide understanding of the con-
cepts and methods for reducing analysis and computational effort as well as
to serve as a practical guide for their application. They have been prepared
primarily for the systems analyst and computer programmer who have a
basic background and experience in simulation and elementary statistics.
Thus, the material is presented so as to preclude extensive knowledge of
statistical techniques or of extensive literature search. However, it is
assumed the reader has a grasp of the fundamentals of Monte Carlo methods,
simulation modeling, and elementary statistics.



VARIANCE REDUCTION
1, INTRODUCTION

A useful feature of Monte Carlo simulation is that the analyst has
the flexibility to dictate his simulation conditions and sampling plans to
a much greater extent than does an experimenter in a real world envirou-
ment. This extra latitude provides an excellent opportunity for optimal de-
sigi: of simulations to obtain estimates with minimal sampling size. This
will effectively reduce the time and effort involved in computation as the
number of trials necessary to achieve a given accuracy is thereby reduced.
In view of the large number of situations where simulation results can he
substantially improved, it is fair to say that no simulation problem has been
justly treated until the possibility of applying variance reduction techniques
has been seriously considered.

The procedures which are available in the design of a Monte Carlo
simulation for minimizing the required sample size are generaily called
variance reduction techniques. The intent here is to provide the analyst
with an understanding of and an appreciation for several variance reduction
techniques and to provide a useful guide for selecting and using the most
appropriate technique for his particular problem.

It is difficult to provide a complete perspective on variance reduction
techniques. This is primarily due to the fact that there are an infinite num-
ber of ways Monte Carlo simulation can be accomplished for a given problem
and each could conceivably be used to calculate the simulation objective al-
though with greatly different efficiencies. However, it appears fair to say
that the approach to improving simulation efficiency was not seriously



considered until the work on the atomic bomb during the Second World
War. (14) ‘his work initially involved the use of '"straightforward" Monte
Carlo simulation for nuclear particle transport, but early in these investi-

(18) applied certain variance reduction tech-

gations Von Neumann and Ulam
niques. A systematic development of these techniques was presented by
Harris and !.ahn about 1948. (19) Although comprehensive, this detailed work
is difficult to apply to general problems. Subsequent application and develop-
ment of variance reduction techniques has been almost exclusively carried
out within the radiation transport community. This has resulted in limited
applicarion in other areas where Monte Carlo simulation is used. It is the
purpose of this document to provide a n.echanism to aid in a wider app'ication
of variance reduction. This has been attempted by presenting the material

in two parts.

Part I, BASIC CONCEPTS OF VARIANCE REDUCTION, presents
the fundamental principles and relationships among several variance reduc-
tion techniques. Part I is intended to provide the reader with a background
and an understanding of variance reduction. It is recommended that the user
who is not familiar with the basic concepts review Part I before attempting to

implement variance reduction.

Part II of this volume, APPLICATION OF VARIANCE REDUCTION
TECHNIQUES, comes as close as currently practical to being a step-by-step
procedure for application of variance reduction. However, the reader should
have an understanding of the basic principles involved. In most cases con-
siderable ingenuity and insight will also be necessary. The approach here has
been to present a convenient characterization of the various methods con-
sidered for purposes of selection. This is followed by a summary of guide-

lines on how to actually apply each method.



This volume also includes other information useful in applying vari-
ance reduction techniques to Monte Carlo problems. Appendix / presents
a summary of the pertinent analytical formulations and Appendix b is an
abstracted bibliography of useful references.



2. CHARACTERIZATION OF VARIANCE REDUCTION TECHNIQUES

In this section the general characteristics of variance reduction tech-
niques will be introduced. In Section 3 each method will be discussed in detail.

2.1 CLASSIFICATION OF TECHNIQUES

As the name implies, variance reduction is concerned with increasing
the accuracy of Monte Carlo estimates of parameters., A simulation using one
or more reduction techniques can be contrasted with what may be considered
the crude (sometimes called direct or straightforward) Monte Carlo approach
where an attempt is made to create true-to-life or actual models of the process.
In crude sampling, flows through the model and sampling probability distribu-
tions are chosen to reflect the real situation as exactly as possible. On the
other hand, variance reduction techniques attempt to increase the effectiveness

of the Monte Carlo method by:

e Modifying the simulation procedure
e Utilization of approximate or analytical information
e Studying the system within a different context or abstract

representation

Based on these approaches a general classification of several known variance
reduction schemes is presented in Table 2.1. Many of the techniques presented
in Table 2.1 are related and it is difficult to arrive at a completely distinct
classification, However, the manner in which they are presented here is useful

for subsequent discussions.

Modifying the sampling process is usually achieved by using more ef-
fective sampling techniques or altering the sampling distributions. As an
example consider the problem of estimating the probability of an early failure
in a piece of electronic equipment, and suppose that the Jailure distribution
for this equipment is exponential with a very long mean time between failures
(MTBF). In a crude Monte Carlo evaluation the ratio of the number of early
failure to the total number of simulated failures is very small. Thus, in

Preceding page blank -



TABLE 2.1
Classification of Variance Reduction Techniques

o MODIFICATION OF THE SAMPLING PROCESS

e Importance Sampling

o russian Roulette and Splitting
e Systematic Sampling

e Stratified Sampling

o USE OF ANALYTICAL EQUIVALENCE

Expected Values
Statistical Estimation
Correlated Sampling
History Reanalysis
Control Variates
Antithetic Variates
Reégression

o SPECIALIZED TECHNIQUES

Sequential Sampling
Adjoint Formulation
Transformations
Orthonormal Functions
Conditional Monte Carlo

order to generate confidence in an estimate for the probability of early
failure, one must simulate a very large number of failures. The num-

ber of simulated events required can be substantially reduced, however, if
the failure distribution in the simulation is suitably modified. In particular,
if an exponential distribution with a short MTBF is substituted for the actual
failure distribution, more early failures will be observed, and thus a more
accurate answer can be desived with less simulation effort. This procedure
is referred to as importance sampling. Of course, the modifications intro-
duced in the sampling distribution must be accounted for when determining
the desired estimate since the failure processes, (actual and modified) are
not the same.
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The above example, simulating events of very low probability, illus-
trates one area where variance reduction techniques are always beneficial, if
not an absolute necessity. If the occurrence of an event in a process is on the
order of one in a thousand, then one would expect an event to occur only once
in every thousand direct simulations of the process. Since the accuracy in
measuring an event is related to the number of times it occurs, the crude
simulation has to be run many thousands of times before much accuracy is
achieved. The common variance reduction procedure in these cases involves
altering the simulation in a Xnown way so that the rare events can be ob-

served more frequently,

Other forms of variance reduction are based on the fact that analytic
procedures are usually preferable to simulation. Thus, reverting to simu-
lation implies the problem does not have a readily available analytic solution.
However, in many cases segments of the process may be amenable to deter-
mining a closed form solution. In other cases, the overall process or seg-
ments of the process may be closely correlated to a simpler, approximate
process with known analytic solutions. In both situations substantial improve-
ment can be realized by taking advantage of this knowledge. This class of
techniques is described by the term ''use of analytical equivalence".

As a simple example of the use of analytical equivalence, consider
again a piece of electronic equipmer*. Suppose this time, however, that the
failure distribution of the equipment is not exponential, but assume that the
exponential distribution may serve as a first approximation to it. The correla-
tion approach to variance reduction involves investigating the failure proper-
ties of this equipment by ‘&Kl advantage of this knowledge and simulating
the difference between the actual and the approximate exponential failure rate
instead of simulating the actual process. The properties of the actual process
can then be inferred using the analytic properties of the exponential distribu-
tion and the results from the simulation on the difference between the actual and
exponential distribution. This approach is called control variates. |



In addition to sampling modification and analytical equivalence, therc
are certain specialized techniques that can be used to achieve varjance
reduction. These procedures may include the application of one or more of
the above techniques in its implementation. One powerful procedure is called
sequential Monte Carlo. In order to effectively employ variance reduction in
a simulation, some knowledge about the process and the answers to be genera-~
ted must exist. One way to gain this information is through a direct simula-
tion of the process. Results from this simulation can then be used to define
variance reduction techniaues which will refine and improve the efficiency of
a second simulation. [In complex problems, several iterations may be called
for.

Another procedure which often proves valuable in developing variance
reduction procedures is to consider the process from various viewpoints. In
many {low processes, for example, hints for effective importance functions
can be gained by considering the process in reverse or looking at the mathe-
matical adjoint of the problem under study. However, as with many of the
specialized techniques described in Table 2. 1, it is not adequately developed
for general application.

Generally variance reduction techniques can be aimed at reducing the
variance of the estimate of only one parameter or aspect of the process
being simulated. Using variance reduction techniques on one parameter can
reduce the effectiveness of the simulation to estimate other parameters. It
is very important, therefore,to first determine all of the results which will
be desired from the simulation before searching for a technique to apply to a
given situation.

If several quantities (parameters) are to beestimated by the simula-
tion, the selection of a variance reduction technique has to be considered
froin the standpoint of all of these parameters. In many circumstances it

10



may be beneficial to create a different Monte Carlo method to estimate each
parameter. The goal for each simulator would be efficient measurement of

a specific parameter.

Each of the techniques or procedures introduced in Table 2.1 will be
discussed in detail in subsequent sections.
2.2 VARIANCE REDUCTION AND KNOWLEDGE OF THE PROCESS TO

BE SIMULATED

As the discussion of the previous section suggests, variance reduction
can be viewed as a means to use known, usually qualitative, information about
the process in an explicit and quantitative manner. In fact, if nothing is known
about the process to be simulated, variance reduction cannot be directly
achieved. (However, sequential sampling may be used to generate the required
knowledge.) The other extreme from no knowledge is complete knowledge,
and in this case a zero variance simulation can be devised. Put very simply,
variance reduction techniques cannot give the user something for nothing; it
is merelv a way of not wasting information. Therefore, the more that is known
about the problem, the more effective variance reduction can be and the more
powerful are the techniques that can be employed. Hence, it is always impor-
tant to clearly define as much as is possible what is known about a problem.

Knowledge of a process to be simulated can be qualitative and/or
quantitative., Both are useful. It is important to use all the information avail-
able, and in fact it may be useful to do limited crude simulations of the process
to gain some knowledge, especially if a little data might lead to extensive
insight. Selection of a variance reduction technique(s) for a particular simu-
lation is thus peculiar to that simulation, and general procedures are difficult
to establish. However, the mental exercise and the initial groundwork that
must be established in order to select or evalute the usefulness of applying
these techniques is almost always worth the effort. Searching for a technique

11



forces the simulation designer into asking the basic questions of: (1) '"What
answers are to be generated from the simulation,' and (2) what is known about

the behavior of the process''?

Problem definition is thus of paramount importance. Before consider-
ing variance reduction techniques it is important to characterize aspects of
the problem which might indicate which might be fruitfully applied. To evalu-
ate the usefulness of these methods for a particular problem it is necessary
to:

e List all of the parameters to be estimated from the simulation.

o Determine all the available knowledge on the internal workings

cf the process to be simulated.

In fact,clearly delineating such information is the basis for the approach pre-
sented in Part 11, APPLICATION OF VARIANCE REDUCTION TECHNIQUES.

2.3 INTEGRAL REPRESENTATION

In principle a Monte Carlo procedure can be interpreted as a method
for evaluating an integral, or more graphically, the area under a curve. Since
integrals can also be evaluated by analytic or numerical methods, reverting
to Monte Carlo simulation implies either a very complex integration or,
more generally, an inability to represent the problem in integral form. Knowl-
edge that the Monte Carlo procdure-does have an integral representation and
determining the explicit form of that integral is fundamental to understanding
and developing variance reduction techniques.

An intuitive justification for the integral representation can be given
by considering how the Monte Carlo method works. The model of the process,
or simulation, is cxercised numerous times. Conclusions about the process
are drawn by averaging the individual outcomes. From a probabilistic view-
point, averaging is a means for estimating particular types of integrals known
as expectations or expected values.

12



Symbolically, suppose g(xl, oo ,Xn) is the outcome or result obtained
from a simulation. The xi values represent a particular outcome* from
each of the random processes affecting the characteristic of the system being
estimn'ed. To simplify the presentation, let X represent the vector
(xl, oo ,xn). I £(X) denotes the probability density function of ® (i.e.,
joint probability density function of L STRREY xn), then the objective of the

Monte Carlo simulation is to estimate the integral

I = Eg®] = [e@IX)dX . (2.1)

A crude application of Monte Carlo would obtain an estimate I by
selecting a random sample 21, 600 ,XN from f(X) and compute the sample
mean using

N
i) ek (2.9

The law of large numbers ensures the convergence of i to I in most casessm)

It is, of course, true that 3 is a random variable and that the expected
value of 1 equals I. That is,

E[] =1 (2.9)

It is said that ‘i is an unbiased estimator for I when (2. 3) holds. This is
important to keep in mind when estimators for variance reduction are con-
structed since variance reduction can lead to biased estimators unless care

is taken.

.
Using general notation, X represents a particular outcome of the random
variable x.

13



An estimate of the error in the estimator [ is given by the sample

variance 82, where

N
- D ) ey - 1P m’nz @) -1 (2. 4)
i=1

S2 is commonly used as an estimate for a , the population variance,
which is defined as

o® = E[(g® -1)?] (2.5)

S2 is also used as a basis for evaluating the effectiveness of Monte

Carlo simulations. A basic measure for such effectiveness if E[ﬁ-l)z]. It is
easy to see that*

E[G-n?] - ¢*/N (2.6)
Note that as N -+ =, E[(I-I)z] - 0. -

Now, since 02 is estimated using Sz, an estimate for E[(f—l)z] is con-
structed using

i=1

2 8 _ 1 Il - 24
< =w=(u—.1)lﬁzg %) -1 (2.7

The estimator 8 is often used as an absolute measure of the accuracy of
a simulation.

[
It is assumed that a simulation will consist of N statistically independent
histories.

*k .
Since E[(i -1)2] +0as N-=, then I is said to be a consistent estimator
for I.

14



Use of the integral representation provides a convenient mechanism
to develop and apply variance reduction in simulation, and if possible, such
a representation should be established. As a trivial example of how this might
be accomplished consider the queueing system shown in Fig. 2.1. Here t
indicates time. Further it is assumed that fl(t), cee ,f7(t) are probability
density functions for the time required to go through the corresponding box.
Py and Py are respective probabilities for going along the paths indicated.
Similarly for Pyy and Pgq-

It is easy to see that the average time to pass through the system
is given by

—
]

j‘; 1,00 + Py o0 + Byafa® + £,(8) + £5(8) + By fo(t) + fo(B)]at

" t f(t)at
j'o (t)

which has the same qualitative form as Eq. 2.1i. Such integral representa-
tion can greatly simplify the application of variance reduction techniques
and will be used as a basis for the discussion presented later.

{

Py

£,® Par=| 14®)

Pyg - iaﬂt) ;)

Paa

Fig. 2.1. Schematic of a Simple Queueing System

15



2.4 EFFICIENCY OF VARIANCE REDUCTION

This section presents the basic ideas and practical expressions for
estimating the efficiency cf variance reduction techniques.

2.4.1 General Concepts

The measure introduced in the previous discussion that will be used
to evaluate the effectiveness of a simulation was E[(i-l)?‘]. This is estimated

using 82 defined by (2.7). That is,

N
- h 3 e -2 @
i=1
s2 is an estimate for the variance of ‘i It can be shown that

E[s?] = E[d -D?] = o®/N (2.9)

where 02 is the variance of g(i’) and N is the sample size or the number

of histories.

It can be seen from (2.9) that, as the number of histories, N, in-
creases, the closer ‘i will come to 1.

Another way to consider this is in terms of intervals of uncertainty.
For example it is known from basic statistics(14) that, with high probability
the estimate I will fall between 1 - ko//N and I + ko/ﬂ' where k is some
constant. Thus for a fixed k, the convergence of the estimate is related
to the number of histories , N, and the variance of g(i').

Two approaches can be taken to increase the accuracy of the estimator,
1. One is to increase the number of histories. The other is to reduce the
variance (o) associated with each observation. The disadvantage of increasing
the number of iterations (i.e., the size of N) is obvious. For example, to re-
duce the interval of uncertainty by a factor of two, thus doubling the accuracy,

16
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four times as many histories would be required (for a fourfold increase in
computing time). Eventually it becomes prohibitively expensive to gain
further accuracy by increasing the number of histories. Therefore,
achieving variance reduction which reduces the variance associated with
each history, o, is highly desirable for improvements in the answers.

To evaluate the efficiency gained in the use of variance reduction
techniques it is clearly desirable to have a quantitative measure. This can
readily be established based on the ideas introduced above. Suppose two
simulation method exist for estimating the same parameter I. Let the
variance per history associated with the first simulation method be of and
that associated with the second be og. It is defired that the result be known
within an uncertainty of ¢ (i.e., the estimate I fall in the interval I-c
to I+¢). For this to happen with high probability will require N1 = k o 1/ e
histories for the first method. For the second method, it will require
N =k og/ ¢ histories. In general the two methods will require different
amounts of computational effort to generate each history. Let the computer
time taken per history by the first method be t1 seconds and by the second
t:2 seconds. Then the total t1me required for the first method to achieve the
desired accuracy would be k o / c . Total time for the second method
would be kzog t2/ e . The relatlve efficiency of the two simulation methods

is given by the ratio of the computing times required. Thus,

efficiency = ¢ = ——— (2.10)
tyo
272
which is the relative time advantage gained by using the second method.

In most applications a variance reduction method is being compared
to crude sampling. That is, t1 and of would be that obtained when crude

17



sampling is used, while t2 and og refer to the computation using the vari-
ance reduction method.

2.4.2 Estimation of Variance Reduction Efficiency

The difficulty in using definition (2. 10) for efficiency is that af and

o, are rarely known. However, it is reasonable to replace them by their
estimators and get an estimator for ¢,
8y
. = (2.11)
22
where
N Nl 9
2 _ 1 1 z : 2 _4
L
with
Ny
i o= J E X 2.13)
1, = 52 8X) (2.
1551
and 5{1, cen ’iN being a random sample obtained with crude Monte Carl:i.
Also, 1
N 2
2 2 1 23, 32
Sz = N—-l }T g (Xi) -12 (2. 14)
2 242
with
N
" ~ 1 -)'
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and Xi, Xi‘I being a random sample obtained using variance reduction,
2
It is important to recognize that ¢ is a random variable and in practi-
cal application will be subject to random variations. In fact, as Sf “and Sg

ere second order quantities, they will be subject to much larger variation

~

than first order parameters such as 1.

Note that the use of (2.12) and (2. 14) assumes that independent ran-
dom histories were available. However, the application of many variance
reduction techniques will not produce histories that are statistically indepen-
dent. This is particularly true when stratified, systematic sampling, or
Russian Roulette and splitting are used. In some cases correlated sampling
and history reanalysis will also produce samples thal are not independent .

In cases where a truly random sample is not available (or suspected
to be not available), it is convenient to use a batching proress to estimate
the sample variance. The general guidelines to follow in application of batch-

ing are:

1. Obtain a sample, say g(X.),...,gX,..) consisting of N his-
tories (which may or may kot be independent).

2. Group the histories into batches such that the batches are in-
dependent and equivalent. For example, it may be possible
to arrange the histories so that the sample contained within
any batch will be independent from the samples in any other
batch. However, the samples within a batch may be correlated
with each other. In the case of stratified sampling, each batch
must consist of the same number of samples from the same
strata. (Typically, the number of batches, Np, should be be -

tween 10 and 50.)

3. Construct an average in each batch for the parameters being
estimated. That is, if g(il), cen ,g(iN ) are contained in
batch 1, then set 1

Ny
i =Nl2 g®) (2. 16)

where it is assumed that there are N1 sample in each batch.
19



4. Construct a final estimate for I using

~ 1 -
1 = IT'E I (2.17)

i=

o)
[y

5. Obtain an estimate for 02 from

s2 - r——nzl(t-r) N_i N Z: 12 (2. 18)

In essence, each batch is being considered as q separate small simu-
lation run. Parameters are estimated as the average of the estimates ob-
tained in each batch. The sample variance of the different batch estimates pro-
vides a basis for estimating the variance of the final average. This technique
is completely general; it will work in all cases no matlter what combination
of variance reduction techniques are being used nor what kind of parameter
is being estimated. Batching may not provide the best estimate in all cases;
usually a better estimator can be constructed for any particular techniques
being used. However, there frequently are easily -missed subtleties in en~
suring that an estimator is based on independent and equivalent samples. It
is generally best to avoid the analysis required to generate an estimator valid
for the particular methods employed - and also avoid the pitfall of constructing
an erroneous estimator - by using batching to calculaie variances.

2.4.3 Estimation of Confidence Intervals

In some applications, it is of interest to calculate confidence inter -
vals for estimated parameters when variance reduction is used. Under the
usual assumptions, (14) the confidence interval of size a can be obtained

from the following expression:

20



TS ~ T8 1 [T 2
PlI-2<1<1+=2]2>—= et /%t = o (2. 19)
JN JN] J2n [T

where a may be obtained {rom Table 2. 2. The value of S may be obtained

using (2.4) or (2.18). Then, the interval I - TS ; T+ LSt is said to be

JN N

a 100 o% confidence interval for the estimate of I.

2.5 THE PITFALLS OF OVERBIASING AND UNDERBIASING

The goal of varianee reduction is improved efficiency, that is, making
the best use of computing time to simulate events which are most significant
to the iinal answer. In modifying the sampling to bring this about, it is
possible to overshoot the mark and produce a sampling scheme that is so
strongly biased as to be less efficieut than crude samyping. This is termed
‘overbiasing’' or 'oversampling'. The opposite term, 'underbiasing' or
‘undersampling’, is used to apply to the crude or slightly modified sampling
scheme when the result depends heavily on infrequent events and not enough

observations occurred for good statistics.

It is a general characteristic of both overbiased and underbiased
situations that most of the time the answers generated are too small. This
produces an apparently consistent bias in the results which can be more
troublesome than poor confidence intervals in the resull. Furthermore,
variance estimates are also generally small so that the confidence intervals
calculated in the simulation will tend to indicate that the results are much
more accurate than they really are. This generates a false sense of security
and faith in results which are actually consistently bad.

As an extremely simplified example, consider a simulation in which
there are basically two classes of events. One type of event (xl) occurs
frequently(f(xl) =.9999) but contributes only a small amount (g(Xl) =.01) to
the final result while the other type (event Xz) is rare (f(Xz) =, 0001) but
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Table of the Standard Cumulative Normal Distribution
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makes a large contribution (g(xz) = 100) when it does occur. In this example,
the integral 1 being estime.ted has the correct value:

I

f:(probability of event i)*(value of event i

= .02 (2. 20)

However, using crude Monte Carlo with a moderate (several hundred to a
thousand) number of histories, event Xz would very probably never occur
and the 'underbiased' answer would be recorded as

15 g(xl) = .01 (2. 21)

If it was realized that X2 events made such 2 heavy contribution to the re-
sult, one natural response would be to modify the simulation so that X2
events occurred frequently (see the discussion of importance sampling in
Section 3. 1.1 for an explanation of the formuias used in this example). If

this modification was carried to excess, say new probabilities of f*(x2)=. 9999
and f*(xl) = .0001 were used, then X1 events would not occur in a run of
moderate size and the 'overbiased' estimate would turn out to be

2 .0001

IO = g(x2)°f7(x—25 = 100- :‘99—9-9— ~ .01 . (2.22)

The proper modification for this example is to let X1 and Xz events occur
with equal probability, f*(Xl) = i*(Xz) =.5, Then, the contribution from
each history is

f(Xl)

(X,
- . . 9999 _ 2 . 0001
g(xl) %0 5 = .01 _.5_~’02 = g(xz)mx_z.,_ 100 - ——
(2.23)
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and the final estimate from a small sample would be
t - .02 (2. 24)

The above example is somewhat extreme but illustrates the general nature
of most simulations where variance reduction is needed. The underlying dis-
tribution is highly skewed with the large majority of cases making little or
no contribution to the final answer while a small number d cases can make
large contributions. In both the 'overbiased' and 'underbiased’' example,
the final estimates were smaller than ¢he correct value amd this is also a
general characteristic of such cases. In the example, if a set of 100 his-
tories was simulated using crude Monte Carlo, then most likely there
would be no x2 events observed and the (incorrect) estimate would be . 01.
Once in every 100 sets of 100 histories, a single x2 event would be simu-
lated. For that set of histories the estimate would be

i& = 1/100[99. .01 + 1-100}~1.01 , (2. 25)

A number ve:y much larger than the correct value, (Notice that this makes

the estimation average out correctly in the long run.) Unfortunately, at this
stage the human factor enters the problem. Most users confronted with several
similar runs giving values of .01 and one run giving 1.01 will decide that the
1.01 estimate was the result of some input mistake or computer error, and

throw out that run.

In this example the variance estimates produced would be zero
for all runs except the one in a hundred which had a mean value of 1.01.
For this case the relative standard deviztion would be almost 100%, a sure
sign of insufficient sampling.

Therefore caution is recommended in simulations where most his-
tories contribute a small bit to the answer but a few histories contribute a
large value, and complete faith should not be placed in estimates of variance
especially when the results are smaller than expected or if the possibility of
overbiasing or underbiasing is suspected.
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3. VARIANCE REDUCTION TECHNIQUES

To provide a reasonable presentation of variance reduction, it is
imperative that some organization be given to relate the various techniques.
To this end the techniques or approaches for achieving variance reduction
were grouped in the following three classes which were introduced in the
previous section.

e Modification of the sampling process

¢ Use of analytical equivalence

® Specialized techniques
A summary of the specific variance reduction techniques in each of these
classes was presented in Table 2.1.

The techniques which modify the sampling process effectively alter
the probability distributions of the random variables so that the more signi-
fic-nt events are observed more often. The use of analytical equivalence
exploits analytical expressions and expected values to explain or approxi-
mate the majority of the phénomena, thus leaving only the most interesting
portions of the process to be simulated. Specialized approaches encompass
the more sophisticated techniques for achieving variance reduction.

In this section of the report, the techniques presented in each of these

three classes is discussed in detail.

3.1 MODIFICATION OF THE SAMPLING PROCESS
Variance reduction techniques in this class include:

Importance Sampling

Russian Roulette and Splitting

Systematic Sampling
Stratified Sampling

25
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These have several common characteristics in that they all reduce
the variance of the estimate by sampling from a probability distribution dif -
ferent from the true physical distribvtion. In Y2is way more of the interest-
ing events will be observed, i.e., more of the events that contribute to the
result being estimated will be observed and less computing time will be
spent on events of no importance to the results. These techniques also pre-
serve the actual physical process of the system in the simulation mode. Only
the probabilities are altered; the flow of events remains essentially the same.

3.1.1 Importance Sampling'345%1313141617,1819,20,23,26,2826,34,3536,37)

3.1.1.1 General Concepts

Under this scheme the sampling distributions which would be used in
the direct simulation are replaced with ones which force the sampling into
more interesting, or important regions. For instance, in tossing a pair of
dice, if one is interested in the occurrence of a three, one could weight or
bias each die toward the numbers one and two. The biasing of the sampling
distributions is done in 2 known fas#ion so that this information can be used
to alter the computation of the results so as to unbias the answers.

Mathematically the importance sampling idea can be illustrated by
considering a Monte Carlo estimate of a parameter 1 where

I = E[g(0)] = [g(xf(x)dx . (3.1)
The direct or straightforward Monte Carlo procedure would be as follows:

¢ Select a random samp\e Xl’ 5 ,XN from the distribution with
density 1(x)

e Estimate 1 using

N
- & ?_;g(xi) : (3.2)

26



As indicated in Section 2. 3, the sample variance for this estimate is given

by

N N
s - G Y ey -if - g £ Y iy -1 3.9
i=1 =

Now suppose the sampling was not from f(x), but rather from a
distribution f*(x). Then it is clear from (3.1) that I may be expressed as

o f L’Q@f*(x)dx (3.4)
£+(x)
where it is assumed f*(x) does not go to zero when g(x)f(x) is not zero.

Now, if a sampling procedure were set up which selected a random

sample xl, 500 ,XN from f{*(x), then the new estimator for I would be
given by ‘

b d

ZN: gIX)I(X,)

—F(XT (3.5)
i=1

1(X.)

Thus, when Xi is selected from f*(x), the sample is weighted by f;-mi-s

in the final result. Also, the sample variance is given by

N 2
gXMX,) . gX )X .
Sz‘iﬁz[ ) I1 ﬂ} x| -1 39
i=1

It is of interest to consider the expected value of the square of the difference
between il and I. That is,
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i=1 i

2
- & _[[(");"‘)] f‘(x)dx-lzf (3.7

Now it is seen that if*

fo(x) - BRI (3. 8)

then E[(I1 - I)z] = 0, a desirable situation. But this implies the ridiculous
condition that I is known. (This is the extreme Situation indicated previously
in that if the answer is known, a sampling scheme can be developed with ex-
pected zero variance.) However, (3. 8) does suggest that if something close
to the form g(_xr)_f_(_x_) can be conveniently selected for f*(x) then a large
improvement in the simulation should be possible. For example, consider
Fig. 3.1. which qualitatively shows f(x) and g(x)f(x) . A reasonable sampling
function f*(x) which approximates g(xl)_f(x_) is indicated. f*(x) is called the
importance sampling function since it tends to emphasize the areas where the
expression f(x)g(x) is most important. f*(x) could be something as simple
and easy to work with as an exponential or normal distribution. The aim of
importance sampling can, therefore, be to concentrate the distribution of
sample points in the parts of the interval which are most important. This
demonstrates again the utilization of knowledge of the process to accomplish
variance reduction. It is desirable of course that f*(x) be easy to work with
(1. e., integrable) which is usually a conflicting requirement to having f*(x)
g_(xt)_f(x) as possible.

2
N
] ( 1y g(X M(X,) 1)
\

as close to

+Note that if g(x) ever changes sign, a zero variance sampling function is not
so easily obtained since £*(x) must be non-negative to be a density function.
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Fig. 3.1. Illustration of the Importance Sampling Concept.

3.1.1.2 Comparison of tmportance Sampling with Straightforward Sampling

Unless carefully implemented, importance sampling has the potential

of giving worse results than crude sampling. This can be seen by a com-
parison of the expected values of the sampling variances in the two situations.

That is, from (3. 3) and (3. 6),

1 - 180 (o (3.9)

Efs®-s?] - Es?)- e8] - [et

There is no assurance (3.9) will e positive. Therefore, in selection of
f*(x), a worse result could be obtained from the selection of f*(x) over
f(x) as the sampling distribution. This can be avoided, however, by care-
ful selection of the importance function f*(x).



3.1.1.3 Extensions of Importance Sampling Concepts

One extension of interest in variance reduction is in applications
involving two or more variables. To see how an importance function can
be developed in the general situation consider the integral

I = [, g@®dX = [ SEL (3. 10)
X X 1*(X)

Now, if a random sample xl, 600 ,XN is obtained from the importance func-
tion f*(i'), then the estimator for I is

. g L R
L =} E —h" (3.11)
Ry
The sample variance is of the scme form as (3. 6).

As in (3.7, ‘consider

A 2 1 N g2 PR 2 1 e DIV 3 _r2

i=1 f*(xi) x
) (3.12)

As in (3.7), the "best" (i.e., when E[(Il-l)z] = 0) importance func-
tion to select is

t*+{x) = 8_"‘-;’1@ - (3.18)

The arguments for selecting f*(X) is, therefore, identical to those
used for selection of f*(x). However, in practice it is generally difficult to
develop £%(X) due to the multidimensional aspects. An alternate approach
is to try to select some sort of conditional importance function. For example,
suppose X = (x,y). Then an importance sampling function for x, say f*(x)
can be developed as follows:
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= [ gx,9ix,y)dxdy = [ g(x,y)i(x){(y |x)dxdy
x,y X,y

= j‘x vg(x__f’,‘%_’__,)‘f(x) £*(x)f(y|x)dxdy . (3.14)

Now, if X xN is selected from f*(x) and Y1 ’YN selected
from f(y |Xi)f*(xi), then the estimator for 1 is

g(X,, 1’“"1’

11 = ‘N E (3. 15)
The sample variance in this case is
$ i g(xi,Yi)f(xi) P :
§ = ﬁ—
= N4 { NZ[ |l bl
In a manner similar to that used to arrive at (3.12) it is easy to see that
1. L g(x, y)1(x)]? 2
iy 0? - | [EHE] eoaxay -1 }
2
1 £"(x) 2, - 2
= X :J'xm;)-fyg (x, y)f(yl)dydx -1 ; (3.17)
But
Efe’(x, v ] = ! g2(x, y!(y|x)dy (3.18)
31



so the "best" importance function is

, 1/
f*(x) = f(x) |E[g"(x, y)|x (3.19)

[E®=x)|  fmax

1/2
which reduces (3.17) to -%- ;[‘[}E[gz(x,y)lx]: f(x)dx]2 } .

In the general multidimensional case, it follows that the importance function
for x should be

9 1/2
f+(x) = 1(x) \E[g"(x _.) X (3. 20)

2
[EPxDIx)]  foax
where -y’ refers to all the random variables except x.

The estimator for I and the sample variance are given respectively
by expressions similar to (3. 15) and (3. 16).

The selection of the ""best' importance function impiies of course
that the answer being sought is known. Thus, it is clear that the arbitrary
selection of the best importance function would be a matter of luck. How-
ever, an understanding of the above formulations can lead to guidance to
selecting an importance function. For example consider (3.20). In this
case it may be possible to obtain an estimate for E[g2(x, y)|x] by perform-
ing a simulation for fixed values of x and selecting an approximate form for
the results. This and many other variations become readily evident when
serious considerations of importance sampling are undertaken. General
guidelines for achieving such benefits are out!ined in Part U of this document.
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3.1.1.4 General Areas of Applicability for Importance Sampling

Application of the importance sampling technique can be very useful
in simulations which are attempling to estimate very low probability events.
One of the major areas to which this method has been applied is in nuclear
physics in calculating probabilities concerning nuclear particle behavior.
Examples are estimating the probability of penetrating a shield or barrier or
analysis of the wandering of particles within nuclear reactors. Application
of these techniques can also prove fruitful in problems which are more oriented
towards operations research. For example, in vulnerability studies of weapons,
the number of critical hits on a target can be increased by reducing the circular
error probability (CEP) of the weapon from that normally expected. Another
application is in queueing problems where ymprovements in estimates for the
waiting time can be achieved by increasing the arrival rate or increasing the

service {ime.

The effectiveness of importance sampling techniques are, of course,
directly related to the ability to select good importance sampling distributions.
This, in turn, is related to what might be called a priori or beforehand knowl-
ed:e of the process being simulated. In essence, if the answers to the ques-
tions being sought are o .proximately or qualitatively known, then very good
importance functions can be determined. In less favorable situations, the use
of importance sampling might involve an iterative simulation procedure. For
example, results from an initial simulation might be used to generate impor-
tance sampling distributions in a second simulation. Such iterations could

proceed through several stages.

It is also worth noting that in importance sampling, as is the case for
most variance reduction procedures, the samples obtained from the resulting
stindlation may be less effective for estimating certain quantities than crude
sampling. Since the importance functions are selected to increase the ef-
fectiveness of estimating specific quantities or parameters, the estimation of
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other parameters, not involved in this selection, can be greatly impaired by

this procedure.

3.1.2 Russian Roulette and Splitting(lz’ 14, 16, 19, 20, 36)

3.1.2.1 General Concepts

This technique can be very effective in pcoblems which are charac-
terized by a series of events. Examples are random walk, random movement
of a submarine on maneuvers, subsystems in series, etc.

Generally, simulation of a series process of this type can be structured
such that during the simulation it can be examined at various stages. At one
or more of these stages it may be possible to establish whether or not the
process is in an interesting or uninteresting state. (Interesting means likely
to contribute to the desired result.) If the state of a given stage is not of
interest, then one might want to restrict further investigation; that is, kill
off the process with a known probability (Russian Roulette). If, however, the
process is in an interesting slate, one may want to conduct additional investi-
gations; that is, increase the number of simulations starting from that de-
sirable situation (splitting).

This technique can also be particularly useful for simulations involv-
ing a large number of discrete situations. For example, consider a queueing
system in which a large number of individuals are being tracked. Then at a
certain stage in the problem, one of these individuals can be selected and
removed from the system with probability p. If this individual is not re-
moved from the system he is allowed to continue through the system with a
weight (1-p)-1= 1/q. This can be repeated with more individuals (with the
same or different values of p) until the number of individuals being tracked
is reduced to a desired size.

Conversely the number of individuals being tracked in the system
can be :ncreased by splitting. For example, suppose an individual
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has an assigned weight w, then he can be replaced by n individuals

each having a weight w' = w/n. The n individuals can then proceed inde-
pendently through the system, except that the weight assigned at the splitting
must be maintained.

It should be evident from the above descriptions that Russian Roulette
and splitting techniques can be useful when simulating events of low proba-
bility and thus its application can prove beneficial in many of the same situa-
tions where importance sampling may be indicated. Indeed, there is a great
resemblance between the two methods in that both force the simulation into
interesting areas by modification of the sampling disiributions. The differ-
ence between the two is the method of choosirg the important areas. Russian
Roulette and splitting is an "after-the-fact' or passive approach which uses
a straightforward simulation but limits or increases the sampling as a func-
tion of the events which occur during the simulation. Importance sampling,
on the other hand, attempts to force the paths into the more interest'ing areas
by a prior alteration of the underlying random process.

3.1.2.2 Application to a Two-Stage Problem

To illustrate some of the more fundamenta! aspects of Russian
Roulette and splitting,consider the two-stage process in Fig. 3.2. Let X
denote the random observations from the first stage, and Y denote the ob-
servations from the second. Suppose the parameter to be estimated is

I = E[g(x,y)] (3.21)

Crude sampling would generate pairs of values xl’Yl;' o0 ',XN, YN and
estimate I using

N
-+ ?_;gcxi.vi) (3.2

ibe % B
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Suppose, however, it can be determined from the characteristics of
the problem that certain values of X would prOlibly lead to more interesting
results than others. On this basis then, Russian Roulette and splitting would
be implemented by dividing the first stage into the following two mutually
exclusive sets of states:

R,: The set of states where Russian Roulette is used and the

1" gimulation is terminated with probability p=1-q. If the
simulation continues, the estimated parameter is weighted

by 1/q.

Rz: The set of states where splitting is employed by breaking each
simulation reaching a point in R2 Info n -simulations to be con-
tinued from this point in the process. The weight assigned to
each new simulation is 1/n of the weight of the original simulation.

This procedure would be then repeated for N starting situations as shown in
Fig. 3.3. It is clear the sampling process has been modified and thus the
estimator must be adjusted accordingly. In this case the estimator becomes:

ts 413 a2 5 i_——g‘xi’,y" (3.29

Xich XieR2 j=1

It can easily be shown that 1 is an unbiased estimator for I.

Estimation of the sample variance i}} this case is easy to accomplish,

Defining I; (i.e., I; = 0, g(X;,Y;)/q, or j§1 g(Xy, Yj) as the contribution to the
estimator from history i, and since

N

» 1

i - -N-ZIi (3. 24)
=)

then the sample variance is estimated using

8 - oo ’ﬁﬁ;xf -1 (3.25)
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Alternately, batching as described in Section 2. 4. 2 could be used, although
(3. 25) is recommended.

3.1.2.3 Application to a Three-Stage Problem

Although the basic concepts of Russian Roulette and splitting are as
simple as presented above, they can be applied to rather large multistage
problems. To illustrate this, consider the three-stage problem shown in
Fig. 3.4 where it is shown within the context of a crude sampling. Assume
Russian Roulette and splitting is applied between the first and second stages.
The prccedure may be accomplished as follows (s<¢€ also Fig. 3.5).

1. First genera:: a value for x, xi. If XisRu, the history is ter-
minated with probability P = l-ql(i. e., Russiaa Roulette). If the history
is killed, there is no contribution to the estimator.

2. If the history is not killed, a value for Yy, Yi’ is selected. The history
now has a weight l/q1 Y )‘Rm , ‘he history is terminated (Russian
Roulette) wich probability Py = l-q2 If the history is not terminated here,
value of z, Zi is generated. The weight of the history is then (qlqz)

the contribution to the estimate for 1 is

(X, Y, Z)
949y

3. If the history is not killed on X (with weight 1/q,) and Y,¢R,,
then the history is split into n, histories. Next, n, values for Z;

zil’ cooy zin are generated and assigned weights
2

of this history to the estimator is

"
N9

J=1
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4, I X chz, then the history (with weight 1) is split into n; values
Yoo +Ta ny and assigned weights l/nl.

5. Now, each Yj(weight = l/nI), y=1,...,n, is considered in turn.
44 Yj‘Rzl’ the history is killed with probability Py = l-qz. If killed,
there is no contribution to the estimator. If the history is not killed here
a value for Z, say Zj is selected. The weight of Zj is 1/ (nlqz) The
contribution to the estimator in this situation is now given by

3, S

YcR

6. 1f Yj (weight l/nl) €R,,, this history is split into n, histories.
Then n, values of Z are selected zjl’ . ,Zj and a weight of —l—

is assigned to each. The contribution to the estimator along this patil f%

zné g(Xi,Yj. ij)
2, 2,k

X )‘“22 k=1

This procedure is repeated N times as indicated in Fig. 3.5. For each xi
selected then the contribution to the estimator ig for X. ¢ Rll’

N _ g(xiv xi’Yi’ ZJ)
h - E qlqz Z E 0,4, S
Y.¢R
i 21
and if X 12
L T By
Y:'(Rzl YjGR k=1
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Assuming the entire process is repeated N times (i.e.,: N starting values
for x, xl,... ,xn are selected) the estimator is

e ¥ ' 8(X,,Y,,
IS B 1 Do~ o reci

i=1 I 'H ‘R‘Rl Y "R22 =1

‘(xi' i’ Jk) 2 8(X,,Y,,2) 5.5
lY My 4 ny9p
22 jRa1

The procedure, although rather complex to write down as formal ex-

pressions can be seen to be rather straightforward.

As in the two-stage case, the best estimation to use for the sample
variance is

N

s? - N’ﬁ %r i -1 (3.29)

i=1

82 can then be used to compare the efficiency of Russian Roulette and Splitting

to the crude sampling.
3.1.2.4 Weight Standards for General Application

For a general application of Russian Roulette and eplitting, it is best
to introduce the concept of weight standards. Let us presume that the problem
has been broken up into several regions, Rl’ Rz, L oo R‘N (These 'regions' do
not necessarily denote geometrical volumes, bqt rather ranges of the random
variables that describe a state in the system being studied.) For each region,
there will be a high weight, Whp 2 low weight, Wy g2 and an average weight,
Wair Now, whenever a history enters region i, the current weight, w, of
the history is compared to the weight standards as follows:

42



1. H

2. If
®

3. I

W< Wy Russian Roulette is implemented as follows:

With probability 1 - Tw{" the history will be killed.
. i

With probability wl , the history will survive with a new
, Ai

weight of w Af° (Note that the expected weight surviving

from this process is w, which it must be to conserve

weights).
W > Wy splitting is implemented as follows:
Find n such that w - NW,, < Wy o

Create n histories which start from this point with a
weight w Ai'

With probability i , create one more daughter

YAi
history to start irom this point with a weight w Af° (This

procedure conserves the expected weight while making all
histories start from this point with the same weight, w Ai')

Wi < W < Who do nothing to the history.

The underlying assumption in the above procedure is that each region de-
scribes a volume of approximately constant importance. The importance
varjes from region to region in a manner inversely proportional to the
average weight, w A Thus, histories moving into a region of higher in.-
portance (lower weight) will be split while those moving into a region of

lower importance (higher weight) will suffer Russian Roulette. For maximum
efficiency in allocating computer time, all histories in a region of constant
importance should have the same weight. The use of a fixed average weight
standard, rather than fixed splitting parameter, n, or fixed Russian Roulette
probability, p, ensures this in a multiregion setting.
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The high and Jow weight standards, wy and w,, are only used to
define upper and lower limits for triggering the Russian Roulette and
splitting processes. If Russian Roulette and splitting are the only variance
reduction techniques being employed and the history weights are not other-
wise being varied, it is probably best to set Wy = W) =Wy, On the other
hand, if there are other techniques in use which are changing the history
weights, it is best to put a spread between Wy and Wi within which the
weight is allowed to vary. If the spread between Wi and W is too small,
there will be a loss of eificiency due to computing time spent in the book
keeping involved with frequent Russian Roulette and splitting actions. Con-
versely, if the spread is too large, there will be a loss of efficiency as
equal amounts of computing time are expended on histories with unequal
weight.

To estimate expected values and variances, the contribution from a
single original history is computed using

1= g, W) (3. 30)
j

where the summation runs over all contributions from split histories, j.
which originated from the same initial history, i. Then the final estimate
of I for N initial histories is

N
A1 A
I= ¥ z: I (3.81)
i=1

and the sample variance is given by (3. 29).



3.1.2.5 Selection of Criteria for Russian Roulette and Splitting

One difficulty in the application of Russian Roulette and splitting is in
the selection of values for the parameters being used, either weight standards
or Russian Roulette kill probability and number of splittings. The ideal approach
would be to select these parameters to minimize the variance in the estimate
as was done with importance sampling; however, this is generally not practical.
Consequently, intuitive information along with practical limitations (e.g., com-
puter storage) and simpliﬁcqtions must be resorted to. For example, if it is
'felt' that a certain range of Y is twice as important than the remainder of
the range of Y, then a splitting with n = 2 of histories inside the important
range or a Russian Roulette kill factor of . 5 outside the range would be not
unreasonable. A clue to the optimum standards to be selected is given by the
results of analysis for importance sampling (3. 20) or stratified sampling (see
Section 3.1.4). In both cases the resulting weights will be proportional to

E[gz(x)] 1/2 Thys the weight standards in a given region should be inversely
proportional to the root mean square average of the 'pay-off' or result function
i.e., weight standarde should be high in regions of low value and low in regions
of high value.
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3.1.3 System.tic Sampling("’ 12,14, 20,23, 24, 36)

3.1.3.1 General Concept

Systematic sampling is a procedure that modifies selection from the
sample space in a somewhat structured manner. This serves to reduce the
random variation that is introduced into the results when crude Monte Carlo
sampling is used. An important characteristic of systematic sampling is that
if used it will always result in a reduction in variance from the that obtained using
crude sampling. Also, the method rarely involves any significant effort to
implement. Unfortunately, the improvement is generally less than impressive
although as a general rule it should be used whenever the opportunity arises.

Its potential application can generally be associated with initial or
starting conditions in a problem. For example, systematic sampling could
be applied to the distribution of interarrival times of individuals entering a
queueing system, the initial position of a submarine in simulation of an ASW
exercise, etc. Generally, any Monte Carlo problem which has a probability
distribution to characterize the initial conditions can be considered as a candi-
date for application of systematic sampling.

Two methods commonly used for systematic sampling will be described
below. As will be seen, systematic sampling is similar to stratified sampling
to be described next. Stratified sampling can be considered an optional form

of systematic sampling.

In each of the methods to be presented below, the usual form of the
integral,

1 = / g(x)f(x)dx (3.32)

will be considered.
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3.1.3.2 Method 1 for Systematic Sampling

In the first method for applying systematic sampling, assume the
range of the density function f(x) is broken up into N equal regions each
having an area 1/N (N should typically vary between 5 and 50). This

scheme is shown in Fig. 3. 6 for both the probability density f(x) and the
cumulative distribution function F(X) = jﬁ f(x)dx

-

Area = 1/N Fix) N
/\ }
L lgtate v g tagly )

X ——

Fig. 3.6. Interval characterization for systematic sampling
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It is clear that

¥ =[x 5 g=1,N (3. 33)
XeL

Now, assume a sequence of random numbers, Rl’ ceo ,Rn is selected from

the uniform distribution on the interval (0,1). This form of systematic
sampling will then generate the following sequence of numbers

1,...,n
1,....N (3.34)

R
_ 1, (G-1)
Ry " N*°W

For each value of i, this procedure effectively assigns a value of Rij to

i
S |

each interval j.

The next step is to determine Xj; from

1j
R, =Lf(x)dx 5 Ao (3. 35)

The estimator for I is

n n N
i-4)'% -1 Z g(X,) (3. 36)
i=1 i=1 j=1
where
N
- & Zg(xu) . 1=1,...,N (3.37)
j=1

is the contribution from the ith batch of histories.
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The sample variance is computed using

n
s? - B 1/;:;11’ -12 (3. 38)

3.1.3.3 Method II for Systematic Sampling

A second and generally better method to perform systematic sampl-
lag is to allocate N independent samples to each interval defined in Fig. 3.6
rather than scale each random number R, into N intervals. This can be
accomplished by selecting R j; i=1,...,n;§=1,...,N random numbers from
2 uniform distribution U(0,1). Then, n random numbers are allocated to
euch of the N intervals using

, =Ry i=1,...,n
Riy * —N= 5 yo1llN (3.39)

The values of xu are then determined from

i
R{j = /x f(x)dx (3. 40)

The estimators for the sample mean and variance in this case are given by
3.36 and 3. 38 respectively.

Of the two methods described above, the second will always give the
better answer in the sense of smaller variance. However, Method II re-
quires that a larger number of random samples be selected from U(0, 1).
Generally it is recommended that Method II be used in spite of the slightly
additional computation effort required. In both cases, the efficiency of

systematic sampling compared to crude sampling is approximately propor-
tional to Nz.
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3.1.4 Stratified Sampling!s & 7 11, 13, 14, 15,20, 24,27, 32, 33)

3.1.4.1 General Concept

Stratified sampling (sometimes called quota sampling) is similar to
systematic sampling with additional considerations directed toward structur-
ing the sampling process so that regions of large variance will receive more
samples. In this sense, therefore, stratified sampling seeks to combine
the systematic and importance sampling schemes. Alternately, stratified a
sampling can be viewed as a special case of systematic sampling where opti-
mal distribution of samples is attempted.

Generally, all the problem characteristics that serve to define the
applicability of systematic sampling apply to stratified sampling. However,
if additional information on which pertions of the sampling distribution tend
to contribute more to the total variance is available, additional reduction in
the variance can be achieved using stratified sampling.

Assume the sampling range for f(x) is broken up into N regions of
\ength Ll’ S0¢C ’LN‘ In this case, however, assume Lj is selected accord-
ing to some specified Pj where

pj =/f(x)dx s j=1,...,N (3. 41)
xeLj

Schematically this structure is simjl\ar to that in Fig. 3.6. Infact, if

Pj = 1/N,then this structuring would be the same as systematic sampling.

A general rule to follow for selecting the Pj is to select them such that the
variation in g(x)f(x) is the same in each of the intervals,

Once the intervals Ll’ sesy Ly are selected, the next requirement
is to define the number of samples to assign to each interval.
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More specifically, let n:| be the number of samples assigned to inter-

val Lj where ,

N
E nj =N (3.42)
=1

The nj samples can be assigned to interval Lj as follows:

Select le"”’Rn from U(0,1). Then, X,.cL are determined

J 1

by

X,

j-1
Rﬁpj +§ P, =/f(x)dx : 1=1,...,nj (3. 43)

=

An unbiased estimate for I is

N p|"® N
I = E A i g(Xu) = jzl lej (3.44)

=1 1|1=1

where

% 1
Ij = a—;g g(xﬁ) (3. 45)

To see that (3. 44) is unbiased consider

f
Eﬁj) = Ij 3[ %Zg(x)dx (3.46)

Xx€ Lj )

from which it follows that

N
1= Pl

(3.47)
&1

51




To select the nj, consider

2 N 2
E(i-0% - E EPI-I - E ij('fj-rj)
j=1 =]
Z J—L (3. 48)

j=1

where

ojz - f 3 (gtw) - 1] ax - njE[(fj -1)?] (3. 49)

j
L)
Xl

is the variance in the interval Lj'
Now, if the n, are selected to minimize (3. 48) subject to (3. 42), then it
can be shown (24) that n, should be selected to satisfy

nP,o

n, > N—LL ' (3. 50)

Z Po
j=1

Thus, the sample size in each interval should be selected to be proportional

to the fraction of the variance in each interval. The obvious difficulty is, of

course, that the aj2 are not known. However, they can be estimated using
n' n'

n'

i=1

where ni samples are arbitrarily selected in each interval, Aniterative
scheme can be structured to estimate n, as the sampling is carried out.

]
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The sample variance using stratified sampling may be estimated using

s i[g( x)- 112 - ZJ—}

3=1 i=1 i

or a batching procedure (see Section 2. 4. 2) could be used.

As in the case of systematic sampling, the efficiency of stratified
sampling in comparison with crude sampling is = N2,

3.2 ANALYTICAL EQUIVALENCE TECHNIQUES

This group of variance reduction techniques is based on using prior
knowledge of the processes involved to form analytical or approximate solu-
tions to the problem being simulated. This is another means to utilize informa-
tion about the process and is also based on the fact that it is generally beneficial
to use analytical solutions to parts of the problem whenever sufficient prior
knowledge allows. This may mean that a related process is solved exactly
using analytical or other low variance techniques and that the difference be-
tween the exact and related processes is derived by Monte Carlo techniques.

All of the techniques discussed below are based on this concept and many are
very closely related in the principles and ideas involved.

3.2.1 Expected Value(m’ 19, 20, 35, 36)

This technique is based on the fact that analytic determinations are
usually preferred to results gained through simulation. Thus any portion of a
process which can be analytically determined should be replaced by its analy-
tical representation in the model whenever that can be done without losing an
essential element from the simulation. The name "expected rvalue'' refers to
the basic notion that Monte Carlo simulation of any parameter is equivalent to
estimating its expected value, i.e., evaluating an integral. Thus any portion
of the simulation which can be evaluated analytically can be replaced by its ex-
pected value, and this is likely to improve the efficiency of the simulation.
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To demonstrate the application of the expected value technique, con-
sider the two-dimensional integration.

1 = [[1(x,y)g(x,y)dxdy . (.58)

This could, for example, be a two-stage problem such aa that described under
Russian Roulette and splitting (Section 3. 1. 2) and shown schematically in
Fig. 8.1.

Select a Select a Score
—p} Value ——p Value » glx,y)
for x from £(x) for y from f(y|x)

Fig. 3.7. Crude simulation of a two-step process

where first a random sample X is selected from the density function f(x) and
then a random sample Y is selected from the conditional distribution f(y|X).
Now, if this is repeated N times, the crude Monte Carlo estimator for I is

I-= 'IIW Eg(xl, Y) . (3. 54)

Assume, however, that it is possible to compute the expected value of the con-
ditional probability in the second stage given the result of the first stage, Xi.
That is, suppose Efg(ylx)] 18 known analytically.

Then the simulation could be performed by simply generating N values
for X, xi, - XN and using the expected value estimator given by

N

- w 3 Hatix)) (3.5
i=

54



This is an unbiased estimator for I since EﬁE] =1
The sample variance is given by

N N
s - Wl‘ﬁ z; (Elg(y|X))] - 'iE)z = ﬁN:i[f,lf?_l: EX[e(y X,)] - 1%] (3. 56)
i= =

It i8 easy to show that this approach will always give results that are better
than the straightforward Monte Carlo procedure.

The trivial nature of the above description should not be interpreted as
indicating limited potential for this technique. Indeed, its application often
results in a difficult simulation becoming an easy ore. Furthermore, it can
find application in a vast number of problems. For example, in computing
the average time spent in a queueing system, the simulaticn of the server(s)
can be replaced by the mean service time. In radiziion transport, the
stochastic absorption of particles is almost always replaced by a weighting
system involving the expected absorption percentage. '

It is not always possible, of course, to calculate the expected value of &
process in the simulation - if all expected values could be calculated analytically
there would be no need for simulation. Even if the expected value can be cal-
culated, it may not be possible to replace the process by its expected value.

The entire distribution involved in the process may be important in the simula-
tion, or in other words, the second and higher moments may be important to the
final answer and not just the first moment or expected value. In a few cases,
replacing the stochastic process can actually reduce the efficiency. This may be
true whenever the stochastic process is one of the decision points where the
simulation may be terminated. Replacing the termination decision by its ex-
pected value involves assigning a weight to the history and modifying that weight
to allow for the exnected percenfage of terminations at each decision point.

When the survival probability is small, this can lead to computing time being
wasted in simulating a history which may have a vanishingly small . eight after

passing a few decision points.
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Several significant aspects must be considéered before the expected
value techniques can be implemented. Generally, these are:

1.

Identify those parts of the overall simulation for which the
expected value can be determined efficiently.

For each such process identified in 1., a determination must

be made as to whether the random nature of the process is an
esseniial element of the overall simulation or whether it may

be replaced by a deterministic process without loss of desired
realism in the model, i.e., does the fact that the stochastic
process results in a range of outcomes rather than a single
expected value affect the final answers of the simulation? Or,
put in different terms, replacing the random process by its
expected value preserves the first moment of the distribution
but alters all the higher order moments. If these higher order
moments are important to the overall answer (e.g., indeter-
mining a probability distribution) then the stochastic process
cannot be replaced by its expected value. On the other hand,

if the higher order moments do not contribute to the final result,
then replacement by the expected value can be considered. For
a particular physical system, the determination of which stochastic
elements are essential may depend on the particular parameters
being estimated.

Finally, it must be determined if the xeplacement of the random
process by its expected value will W/ rease the efficiency. This
is generally true, but not always. If the process in question is

a branch point where the history may go in either of two (or more)
directions, then replacing the stochastic event by its expected
value requires splitting the history with each part going in one of
the directions and carrying the probability of that branch as a
weight, Should enough of these events be encountered the number
of aplit histories which must be computed can easily expand be-
yond a reasonable bound. Alternatively, one of the branches of
the decision can be to terminate the history; in this case the his-
tory is not split but continues from the branch point with a weight
representing the survival probability. This can easily lead to
histories with very low weights which usually represents a loss
in efficiency in the calculation. Again, this determination is
likely to depend on the particular parameters of interest in the
calculation,



— it .

Once the decision has been made to replace the stochastic
process by its expected value, the implementation depends on
the role of the process in the overall simulation. Specifically,

1. If the process is one of selection of a random variable,
then the process becomes merely a deterministic setting
of the variable to its expected value and the simulation
proceeds as before with no change in estimators.

2. If the process represents a decision between terminating
or not terminating the history, then the history continues

but with a reduced weight representing the probability of
survival. That is,

Ynew = Voud ' Ps (8. 57)

where p_ is the probability of survival (non-termination) at
the decifion point and wold and wpew are the weights of
the history before and after the replaced random process.

For any parameter being calculated, an estimate for each

history can be made by summing the contributions from
that history. That is,

’1‘i - 21': w, £0X,) (3. 58)

where Wj; is the weight of the ith history at the time of the
jth contribution to the final result. Then the final estimate
and the sample variance are given by

A ¥ .
-1
and
2 N 1 Nl\z /iz
S e r 2T .
i=1
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If the contributions to a parameter from a history would
have come from the terminations in the process which was
replaced by its expected value, then the loss of weight at
each such step is the proper estimate for the expected
terminations. In this case we set

I = ? o1d, 1 = “new, ij’ " &%y =? Youd, ij{1-Ps)- 8(X;;)

(8.61)

where j denotes the jth occurrence of the replaced event
in the ith history. The estimators for I and S2 remain
as in (3. 59) and (3. 60) above.

3. If the process represents a decision between two or more
branch points, then the history must be split and followed
from that point on as two separate histories, each taking a
different branch and carrying a weight equal to the proba-
bility of that branch. Parameters are estimated by summing
weighted contributions from all dayghter histories resulting
from an original parent history, using formulas identical to
(3. 58), (3.59), and (3. 60).

In cases 2 and 3 above, histories may develop weights which are
very small. As this may entail spending a good deal of computing time
calculating histories that can make only a trivial contribution to the result,
the efficiency may be very low. To remedy this, Russian Roulette (see
Section 3. 1.2) can be used to eliminate those histories whose weights be-

come too small.

Figure 3.9 shows a schematic flow of a multistage simulation when a
branch process that ig 2 possible termination point for a history is replaced
by its expected value. This may be contrasted to Fig. 3.8 which shows the
crude Monte Carlo approach to the same simulation and Fig. 3. 10 which
shows statistical estimation used on the same problem.
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3.2.2 Statistical Estimation'1%’18,19,20,34,35,36)

It is not essential, and frequently not efficient, for a simulation of
a physical process to be carricd out to the natural termination of the process
in esiimating final outcomes. It is always proper to stop the simulation at
any point and to calculate through analytic or numerical means the expecta-
tion of reaching any final outcome. Indeed, the sooner the simulation is
stopped and the more analytic calculations are done, the lower the variance
will be. Obviously, however, the sooner the simulation is stopped the more
complex and difficult the analytic calculations become and the point is quickly
reached wher- the overall efficiency is less despite the gain in variance re-
duction. At the last step in the simulated process, the probability of reaching
the various final outcomes needs to be determined in order to do the simula-
tion. Thus, it is generally advantageous to use analytic expectations for the
final step. Whether the analytic calculations should be carried beyond the
final step will depend on the particular process and results desired, but
genera.. it is less efficient to use analytic expectations for more than the
last step.

If the process being simulated is a once-through process, i.e., the
final step can be reached only once each history, then the use of expected
outcomes is equivalent to the expected value technique. If the process is
iterative or repetitive with many passes through a branch point where a final
outcome is possible, there are two ways of using the analytic computations.
One is by the expected value technique as outlined in the previous section.

The other is called statistical estimation and shculd be used whenever the
expected value technique would be inefficient. In statistical estimation the
stochastic process is not removed from the simulation, but the expected value,
rather than the result of the simulation, is then used in the estimation.

Consider a simulation consisting of many repetitive steps in which
one step is a random choice betv.een arriving at some final outcome, Yf .

or continuing through the simul «tion process with some other value of y .
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Let the probability of Y, at this step be P(Y,| X) where X denotes all the
other random variables determined at earlier steps in the process. In crude
Monte Carlo, a random number, R , would be generated at this step, and
if R< P(YfIT() , then the history would be terminated with a score of 1. If
R> P(Yfl X) , the history would continue with no score being made. After

N histories the estimate for the probability of reaching Yf would be

ﬁc(yf) = % (3.62)

where n is the number of histories which terminated at Yf . In statistical
estimation, no change is made in the simulation process, i.e., a random
number, R , is drawn and tested to see if the history continues or is termin-
ated. However, the estimation or scoring technique is changed. Every time
the particular step is encountered, a contribution of P(Yfl)_(') is added to the
estimate, regardless of what the actual outcome of the simulation was. Then

the final estimate is given by

N
Pop(Y) = 11?12 > P(Y, | X,) (3.63)
i=1

where the j summation runs over all occurances of the (possibly-) final
step in the course of the ith simulation. An estimate of the variance may
be calculated from

N [ N
2 1 N o 2 N |1 .2 .
§ =N—-TZ (pi'PSE(Yf)) = N-T ﬁZPi - Pgp(Yy)
i=1 i=1
(3.64)
where
P, = ; P(Yf|)—('ij) (3.65)

is the estimate resulting from the ith Listory.
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The schematic flow for the statistical estimation technique in a multi-
stage process is shown in Fig. 3.10 where it can be contrasted with the use
of crude Monte Carlo (Fig. 3.8) and expected value technique (Fig. 3.9) for
the same process.

If the calculations do not get too complicated, the statistical estimation
procedure can be extended to using the probability that the simulation will
reach the desired end in one or two more stages. If the analytic calculations
of such expected values are difficult computationally, then statistical estima-
tion may be less efficient than crude estimators. In employing statistical
estimation, the actual simulations which reach the desired end point must
be neglected to avoid double counting and only the 'statistically estimated’

results used.

The use of statistical estimation will always improve the variance
but it can be particularly useful if the probability of reaching the desired
end point is small at all intermediate stages. It becomes not just useful but
essential when the probability of the end point becomes vanishingly small.
In such a case no actual simulations would reach the desired end point and
the crude Monte Carlo estimator would give a zero result. If there were
many intermediate stages which could, with very low probability, reach the
desired end point, then statistical estimation might calculate the desired

result with good accuracy.

3.2.3 Correlated Sampling(s’ 9,12,14,16, 18, 19, 20, 34, 36)

3.2.3.1 General Concept

Correlated sampling can be one of the most powerful variance reduc-
tion techniques due to the wide applicability of the technique as well as to the
large efficiency gains which can be obtained. Frequently the primary objec-
tive of a simulation study is to determine the effect of a small change in the
system. A crude sampling approach would make two independent runs, with
and without the change in the system being modeled, and subtract the results
obtained. Unfortunately the difference being calculated is often small compared
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to the two separate resu.ts while the variance of the difference will be the
sum of the variances in the two runs. Thus the relative uncertainty in the
difference is generally very large and it can easily happen that the effect
being calculated is smaller than its statistical uncertainty. In such cases
the use of correlated sampling can be essential to obtaining a statistically
significant result. If, instead of being independent, the two simulations

use the same random numbers at comparable stages in the computation, the
results can be highly correlated. The effect of this correlation is to reduce
the variance of the difference in the two results while not changing the vari-
ance in either individual result. As a consequence the effect of the difference
in the system will be known to a much greater accuracy than it would be
otherwise. Another way of viewing correlated sampling through random
number control is to realize that the use of the same random numbers will
generate identical histories in those parts of the two systems which are the
same. Thus any difference in the resulis will be due directly to the differ-
ence in the systems and not to random noise from the unchanged, but sto-
chastic, elements in the rest of the stimulation. This obviously leads to

a gain in efficiency compared to the uncorrelated case.

There are several types of situations where the use of correlated
sampling is indicated. These include:

e The effect of a small change in the system is to be calculated.

e The difference in a parameter in two or more similar cases
is of more interest than its absolute value in any one case.

e A parametric study of several problems is to be performed.
This has greatest potential when the problems are relatively
similar in nature.

e The answer to one of several similar problems is known accur-
ately. The answers to the unknown problems can often be esti-
mated from the known result.
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3.2.3.2 Analytical Formulation

To provide insight into the concept of correlated sampling, consider
the following integrals which characterize different (but hopefully similar
or related) problems:

I, = [f,(x)g,(x)dx (3.66)

and
I

g = [0)e,0)dy (3.67)

of primary interest is the difference
A = Il -Iz . (3.68)

The obvious crude approach is to select N values of X from fl(x),

say xl,...,xN and N values of Y from fz(y), say Y,,...,Yy and

compute

N N N
SREURE DY AR EE D I A AN %ggﬁi)

i=1 i=1
(3.69)

The variance in A is

o2(d) = o2(,) + 02(.) - 2 cov i,,1.) (3.170)

RS A | 2'°2 1’72 '

where

2 A 2

2, A 2

oiiy) = E[d, -1, (3.72)
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and

cev(ly,Ty) = E[@; -1,) (I, - Ip)] = E[d,L)]- LI, (3.173)
Now if il and iz are statistically independent (i. e.,no correlation) then

cov (il,iz) = 0 (3.74)
and

2,4, _ 2 2

o“(B) = o)) + op(i,) (3.75)

)

However, if the random variables Il and iz are positively correlated then
cov (11,12) 2 0 (3.76)

and the variance in the correlated case will be less than that realized with
no correlation.

3.2.3.3 Implementation of Correlated Sampling

The key to reducing the variance of the estimate of A in (3.69) is

to ensure positive correlation between the estimators I1 and 12. This
can be achieved in several ways although the easiest to implement is to ob-
tain correlated samples through random number control. Specifically, this
can be accomplished by using as many of the same random numbers as pos-
sible in paired rituations in the two simulations. One way this might be
accomplished is by using the same sequence of pseudo-random numbers in
the two simulations. For example, in the above problem the same sequence
of uniform random numbers, Rl’ cos ’RN from U(0,1) could be used to

generate the two sequences Xl, oo ,XN and Yl’ oo ’YN by using

Li Yi
Ri = fl(x)dx = [ fz(y)dy (3.7}
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Clearly the random variables xi and Yi are positively correlated since
they both used the same Ri . Infact, if fl is very similur to f2 , the
random sequences will be very highly correlated.

As another example, consider a multistage problem where many of
the events which occur at various stages are not subject to the differences
in problem structure. Then, identical random numbers should be used at
those stages which are not impacied by ire problem differences to produce
some positive correlation between the two simulations and to eliminate sta-
tistical noise from parts of the system which are unchanged.

It is difficvlt to be specific as to how random number control should
be applied in a general problem. As a general rule, however, to achieve
the maximum correlation, the same random numbers should be used whenever
the similarities in problem structure will permit this to occur.

Use of the same sequence of random numbers in two separate runs means
that the histories generated wil! be identical up to the point where the difference
in the system first comes into play. This complete correlation will obviously
eliminate all variance in the difference due to the first, common part of the
simulation. In addition, it is possible to save computational time by doing the
first simulation and storing the knowledge of the state of the system at the
first point in the history where the difference in the two systems affects the
simulation. The second simulation could then start at this point rather than
recomputing the identical first part of the history. However, this frequently
requires more programming effort to implement than is justified.

If it is possible to return to the same sequence of random choices after
the calculations concerned with the perturbation, then obviously all the variance
in the simulation will be associated with the perturbation, with maximum ef-
fectiveness. However, this is generally not possible. Usually the perturba-
tion forces a difference in decision and the two histories proceed in divergent
directions following the perturbation. At the completion of one history and
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the start of the next, it is then necessary to re-synchronize the random num-
ber sequences to begin the next histories identically.

In order to estimate the variance in A obtained through the use of
correlation, it is necessary only to view A\ as if it were being directly simu-
lated and to calculate the sample variance of the difference as

2. |1 ﬁ': a2 - a2 (3.78)
i=1
where
Ag = 8y(X)) - g,(Y)) (3.79)
(18)

3.2.4 History Reanalysis

3.2.4.1 General Concept

History reanalysis is essentially a form of correlated sampling except
that one does not actually run a second simulation using the same random
numbers as in the first. Instead, the detailed results of the first simulation
are reanalyzed to calculate an answer for the second procéss. In this case
the first process is treated as an altered or 'biased' modification of the second
process. In addition to the reduced variance obtained by the correlation,
history reanalysis reduces the computational time involved by not actually
performing the second simulation. This can often lead to quite high effici-
encies for this technique.

Since history reanalysis is a form of correlated sampling, it will
apply to the same types of problems indicated in Section 3.2.3.1. However,
there is an additional constraint that the differences in the systems being
simulated must be expressible as a difierence in a probability distribution
or in the scoring function.
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3.2.4.2 Amlytical Formulation

For the purposes here, it is assumed that there are two problems
of interest which involve estimating I1 and I2 as given by 3.66 and 3.617.
It is assumed thgt 2 random sample Xl, oo ,XN has been obtained from
fl(x). The estimator for I1 is as usual

N
L= & La®) Lok
i=1
Since
8y (X)fy(x)
I, = j'fz(x)gz(x)dx = j'fl(x)—f-(-;— dx , (3.81)

an estimate for I2 can be obtained using

N
Z gz(X )fz(xi) 3. 88)
i=1 .

-

where fl(xi) # 0 is implied whenever gz(xi)fz(xi) #0. This is of course
very reminiscent of the formulas for importance sampling (see Eq. 3.5).
The sample variance for I2 is

2
N
. N Ly B2 X)L s
2= W1 WL | TR) | ' (3.83)

i=1

which may be used in efficiency calculations. However, to properly calculate
the effect of the correlation, it is necessary to estimate the variance of the
difference directly. That is, if

. Be(X)M,(X,)
B = 2 hE L -gx) (3. 84)
177
is the difference in the ith history and

68



(WY

N
3 - § gai (3. 85)

is the average difference, then the sample variance is
g N - 2 A2
PS P 1 a Py
s? - ghB, -0 - | & 28 -8 @-98)
i=1 i=1

Alternatively, batching (Section 2. 4. 2) can be applied to the differences.

3.2.4.3 Further Considerations

The equations in the preceding section show that by simulating ]l and
biasing the results appropriately, an estimate for 12 can be readily generated.
This can obviously be generalized to the case of three or more similar
problems. The time saving gained by not making several separate simulations
is obvious. 11 addition, there will be all the advantages of high correlation due
to the use of a common set of random numbers.

However, the use of history reanalysis is not universally beneficial
and may sometimes be less efficient than independent simulations. The simu-
larity of the equations for history reanalysis to those of importance sampling
has already been noted. It should then be clear that the random sample
Xl, 500 ,XN which has been chosen from fl(x) is not likely to be the optimum
choice, in the scinse of 'importance’, for the simulation of gz(x)fz(x). Thus,
the variance of 12 is likely to be greater than that which would be obtained
from a direct simulation of Iz. Hopefully, the gain in efficiency effected by
the correlation and reduced computation will more than offset this variance
increase but this will not be true in all cases. Obviously the more similar
the two cases are, the more optimum the selection will be for computing 12.
Thus, history reanalysis works best for the problems which are most similar
which are the cases where variance reduction is most necessary.
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There is an important class of problems wihere history reanalysis is
trivially accomplished. This occurs when

g,(x)f,(x) , in some region A

gz(x)fz(x) = (3. 87)
0 , e€lsewhere

An example of this is a simulation that is run for a fixed real-time interval,
Tl’
time interval, T2' Then history reanalysis consists of making a single simu-

lation with the longer time limit, Tl’ scoring for the first case all events, and

and it is desired to know the results of a case that was limited to a shorter

scoring for the second case only those events for which time is less than Tz.

Several extensions readily come to mind. Most significantly, parame-
tric studies to determine the impact of several forms of a sampling distribution
can be readily performed. This capability is often overlooked in simulation
studies resulting in considerable unnecessary expense.

3.2.5 Control Variates'!1s14,20,24,34, 36)

3.2.5.1 General Concept

In many situations where analytic models are difficult or impossible
to develop, there exist simplications or approximations to the problem having
analytic or closed form solutions. In these situations, the analytic information
can be beneficially exploited to reduce variance by what is referred to as con-
trol variates. With this technique, instead of estimating a parameter directly,
the difference between the problem of interest and some analytical model is
simulated. The variance reduction, or increase in accuracy in estimating the
parameters of interest, is directly related to the degree of correlation between
the analytic and the true process. Application of this technique is again very
general and should prove very useful when analytical representations of simpli-
fied models for the system exist.
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The control variate method has several of the features similar to those
of the correlation technique and indeed in some instances is addressed within
the context of correlation. However, the manner in which this technique is
applied is somewhat distinctive and, therefore, will be treated separately here.

3.2.5.2 Analytical Formulation
Again consider the integral

4@

I = / g(x)f(x)dx (3. 88)

Assume that it is possible to determine a function h(x) whose expected
value is known (or analytically determinable) and which closely approximates
g(x). Qualitatively such a situation is shown in Fig. 3.11i. Let

4

e = / h(x)f(x)dx (3. 89)

and assume that 6 is known
Then I can be expressed as

40 4o

I - / h(x)f(x)dx + [ [g(x) - h(x)}f(x)dx

+®
= 0 +/ [g(x) - h(x) i(x)dx = 6 + I1 (3.90)

The function h(x) is called the control variate for g(x) and may be some
approximation (or guess) to g(x).
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g(x) - Original
Function

\ hix) - Control Variate

f(x) - Density Function

Fig. 3.11 TIllustration for Control Variates

Now, since h(x) has been selected so that the first integration can
be completed, simulation is required only on the second term,

L = / [g{x) - h(x)}f(x)dx (3.91)

If crude sampling is used to simulate Il, then a random sample would
be obtained by selecting xl, ce ,XN from f(x) and using

N

N N
I =0+ l/NZ g(x,) - 1/NZ: h(X) = 0+1/NY_ A (3. 92)
i=1 =1

i=1 i
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where

31 = g(X,) - h(X,) (3. 93)

An estimate for the sample variance for purposes of efficiency calculations is

given by
2 N %= a2 a2
$* = &5 ll/NZ 8 -3 (3. 94)
i=1
where
_ N
A =1ND A (3.95)
i1

The use of control variates is but another manifestation of the use
of information about the problem to reduce the variance. In this case a
knowledge of the approximate behavior of the system was used to advantage.
Its effectiveness is greatly dependent, however, on how good h(x) can be
selected to approximate g(x).

It is worthwhile to note that if an approximate shape for g(x) is not
known, it is often possible to obtain an approximation by simply selecting a
few values of x and plotting the results. A straight line fit to the results or
some other simple formulation may significantly improve the efficiency of the
simulation.

3.2.6 Antithetic Variates?» 11,1214, 28, 34, 36)

3.2.6.1 General Concept

The concept of antithetic variates is somewhat related to that for con-
trol variates except that, rather than seeking a function that is similar to the
function being estimated, a function is sought which is negatively correlated.
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The estimation process is then structured to exploit this negative correlation
to reduce the variance in the estimator. The basic idea can be used to develop
very sophisticated and powerful methods. Two methods will be presented below.

3.2.6.2 Method I for Antithetic Variates

The use of antithetic variates can be introduced very simply as follows:
consider again the parameter 1 to be estimated where

I = j_; * g(x)f(x)dx (3. 96)

Assume an unbiased estimator il for 1 exisis. For example, if
crude sampling is used

N
i, = 1N ?Z g(x). (3.97)
-1

Suppose a second unbiased estimator, iz for 1 also exists.

A third unbiased estimator 5 for I can be constructed using

6 = 1/2(1, +1p) (3.98)
and

E[6] = 1
The variance in the estimator 8 is given by

02(6) = 1/4 azﬁl) +1/4 oz(iz) +1/2 cov (il‘iz) (3. 99)

Now, if ‘il and iz are selected such that they are negatively correlated,
- then

cov (il,'iz) <0 (3. 100)
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If cov(il,iz) is sufficiently large (negatively), then

o2(6) < az(ll) (3.101)
and
o?6) <o (iy) (3.102)

Thus, the combined estimator 6 of I1 and 12 will have a smaller variance

than either I1 or Iz.

The estimator, 12’ is called the antithetic variate since it is an

estimator that compensates for the variation in 1 This is, of course, the

1'
concept of negative correlation.
There is a convenient manner in which an antithetic variate can be

obtained. This is as follows:

Consider the estimator 71 to be derived from crude sampling. To
accomphish this a set of random numbers Rl’ ceey R.N will be generated from

U(0,1) and the corresponding values of X, say Xl, ...,X,; canbe obtained

N
from
X
Ri =f f(x)dx ; i=1,...,N (3.103)
It is clear that (Xi} are from the distribution f(x). Now consider genera-
tion (f another set of values of X, X:,... ,XI"I using

\

i
1 -Ri =f fx\dx ; i=1,...,N (3.104)

Again X!,... ’XI'J will be from the distribution f(x). The pairs of values

of Xi and Xi' are, of course, correlated since the same random numbe -
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Ri was used tu generate both values of X. Furthermore, these values of
Xi and xi' are neglatively correlated. That ig small xi corresponds
to large Xi'. This is shown conceptually in Fig. 3.12.

Defining
6, = 1/2g(X) +gX)) (3. 1.05)

Then the estimator for I using the antithetic variates is

N N
0= 1/NY, & =1/2N) [g(X) +g(X)] (3. 106)
i=1 i=1
1.0

W

NOTE: Small X Implies
Large Xj - i.e.,
Negative Correla-
tion

b i i ——
.

[
b
1.‘.

Fig. 3.12 Schematic Showing a Method to Generaic Antithetic Variates
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The sample variance is determined from

20 . L S o a2 1% 52
'mZ“’i 8) ;NZ 6 ; (3.107)
i=1

i=1

3.2.6.3 Method II for Antithetic Variates

A second approach to antithetic variates that has proven very success-

ful is to use a combination of stratified sampling along with antithetic vari-

ates. Consder a case with 2 strata as shown in Fig. 3.13. Assume the range

1.0

I
|
I
|
| I
; |
| |
| |
| I
| I
| |
. 1 -
|
: I |
i | |
X, 0 X, X,
X —————l

Fig, 3.13 Method II for Application of Antithetic Variates
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of f(x) is broken up by X, into the ranges -w<x<X, and X,<x<w, Now,
suppose a random number is selected from U(0, 1} Then select Xi from

X
oR, - / f(x)dx (3. 108)

and select Xi' from

i
¢:z+(1-¢:z)Ri =]Xf(x)dx . (3. 109)

Clearly l‘(i and Xi' are distributed according to f(x) within their appropriate

ranges. Also, xi and Xi' are negatively correlated since small Xi implies

large Xi and vice versa. Now define

8, = ag(X) + (1-a)g(x) (3.110)

An unbiased estimator for I is

N N
6= 1/N DY B = 1N [oglX) + (1-dg(X)] (3.111)
i=1 i=1
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and the sample variance is

N
s |
& - XNy &-¢ (3.112)
&
If « = 1/2, then Eq. 3. 111 reduces to Eq. 3.106,

The difficulty in the use of this second approach is in the selection of
a. A general rule is to select a such that

g(X,) = ag(X;) + (l-a)g(xU) (3.113)
where XU and XL are the upper and lower limits of the range of f(x).
An alternate approach is to utilize a trial and error method to test various

values of o and estimate the improvement realized in the efficiency.

It is important to recognize that the choice of o will not impact the
simulation in the sense that the estimator will still be unbiased. However, it
may result in some loss of efficiency if a poor value is selected.

3.2.7 Regression(7’ 11,14)
3.2.7.1 General Concepts

Regression techniques have found limited application in Monte Carlo
simulation in spite of the seemingly important advantages that

e They can be applied to a wide variety of Monte Carlo simulations

o They will produce unbiased estimates
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e They can be applied in a situation where correlation is known
to exist and will take advantage of such correlation

e If applied to a situation where no correlation exists, nothing is
lost except the additional computational effort involved

Its use appears to be rather limited due to the effort involved ir
formulation of the appropriate estimators and the difficulty encountered
when attempts are made to view a practical simulation problem within the
context of known formulations of the regression method.

3.2.7.2 Aralytical Formulation

To formalize the regression method, assume a. set of integrals
Il’ 600 ,lp are to be estimated. Assume a set of estimates 61, ceey 6n (n=p)
are available satisfying the condition that

E[8,) - aijltl T N A (3.114)

where the matrix

.2
% (3.115)

is known. It is assumed that a éa.mple is available consisting of N indepen-

dent sets of simulated values for éj’ namely 61j""aNj y i=1,..., n
Then
1
b= W D 8 I=1...,n (3.116)
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and the column matrix

%
-: L
8 =] ° (3.117)
o
can be readily constructed.
Now, an estimate for the matrix T is desired where T is defined as
(3.118)

It will be recalled from elementary statistics that the minimum variance
unbiased estimator for T is given by

- -
f -ATy13)12aTy 15 (3.119)

where

(3.120)

is the covariance matrix for 51, 500 ’6n and AT is the transpose of A
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That is

vy = El} 6, - E(éi)}{éj - E(éj)}] =1,...,n (3.121)
i=l,...,n

->
Unfortunately vij is usually not known. However, an estimate for V, can

be obtained using

N
Gij =Z (em-éi) (%'51) ; i=1,...,n (3.122)
k=1

L)

where Oi ;i=1,...,n are obtained from Eq. 3.116.

and
A ,
211' ‘ 'oln
» 21°°°" "2n
v - (3.123)
* A
eznl o0 vnn
The new estimator is therefore
- -> - -»> -
i+ = AT ¢ 1A) AT ¢°13 (3.124)
This is still unbiased since
E[I*] = I (3. 125)

It is recommended that batching be used to obtain an estimate for the
variance oz.



As it is formulated above, the regression technique is very easy to
apply. All that is required is to obtain 3 and 5 from the sample values
and use Eq. 3. 124 to obtain an unbiased estimator for I.

In spite of its relatively simple formulation which is based on some
elementary statistical concepts, the method is difficult to apply in practice
primarily because it is generally difficult to formulate the estimators

91, 600 5n . It has evidently been applied in only trivial situations and reali-
zation of its full potential must await additional development and experience.
Clearly, one characteristic a problem should have before attempting to apply
this method is a linear combination of the estimator and parameters to be
estimated as indicated by Eq. 3.114.

3.3 SPECIALIZED TECHNIQUES

In the foregoing sections several very useful and well developed
Monte Carlo techniques were presented and discussed. There are, however,
a large number of additional procedures that might warrant consideration in
situations where some of the preceding techniques proved ineffective. These
are either not well developed (e.g., orthonormal) or they may be extremely
specialized and have therefore found application in very specific problems
(e.g., the adjoint method). It must be recognized,however, that the application
of these specialized techniques may be necessary to achieve a reasonable
answer in very difficult problems but should be resorted to after this becomes
abundantly clear. These specialized techniques are however fertile fields
for further research into variance reduction,

3.3.1 Sequential Sampling(“’ 19, 25, 30, 34)

Occasionally there is little or no a priori information concerning the
expected results of the simulation or perhaps what knowledge there is strictly



qualitative with no quantitative values on which to base a choice of an impor-
tance function or Russian Roulette or splitting standards. In such a case it
may be possible to use sequential sampling. This is not a specific variance
reduction technique but rather a general approach to the use of other techniques.
In sequential sampling an initial run is made with little or no variance reduc-
tion used. Then the results of this first run are analyzed to calculate an
importance function or used to estimate Russian Roulette standards, strati-
fied sampling parameters, etc. A second run is made using a variance re-
duction technique with the parameters estimated in the first run. Now these
results can be analyzed in conjunction with the first set of histories, to improve
the estimation of the sampling parameters. A third run can then be made using
the improved sampling parameters and this 'self-learning' process can be
carried out through an indefinite number of stages with the efficiency of the
sampling improving at each stage. Despite the simplicity and intuitive appeal
of such an approach, little or no work on sequential sampling has been per-
formed. (There has been some development of 'self-learning' techniques applied
to stratified sampling, and preliminary work is in progress in some other
areas.) Consequently little can be said regarding implementation techniques,
trade -offs of computation required to estimate sampling parameters versus the
efficiency gain from improved sampling, or possible pit-falls (e.g., can an
initial choice of 'underbiased' or 'overbiased' parameters lead to estimation

of parameters that are even more underbiased or overbiased with the sequen-
tial process feeding on itself destructively?)

3.3.2 Orthonormal Functions(l4’ 19, 25, 30, 34)

The use of orthonormal functions in general Monte Carlo simulations
has received little attention, although it does have potential for greatly im-
proving simulation efficiency when it is applied to problems having a large
number of dimensions.
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Basically, the approach is to first define a set of orthogonal functions
over a region of multiple integration. Next, a sampling scheme must be
structured that will permit efficient sampling over this region from a joint
probability density function. In general the procedures to accomplish these
tasks are not well developed and will not be further discussed here. This does
not imply, however, that the potential gains that can be realized with this
technique are not worth the effort but only that no general guidelines or problem
approach can be presented to provide reasonable assurance that the effort
would be fruitful.

3.3.3 Adjoint Method(1%17,21)

In formulating the mathematical equations for the simulation of a
process, it frequently is the case that there is another set of equations, "in-
verted” or '"adjoint” with respect to the first, that is mathematically equivalent
in the sense that a solution to one set of equations will also give a solution to
the second set. This second set, the adjoint equations, may not represent any
real process but can be simulated anyway. Depending on the nature of the
problem and the result being calculated, it may be easier or more efficient
to simulate the adjoint equations than to simulate the direct process. It may
also be possible to split the problem into two parts, one of which is best simu-
lated directly and one of which is best simulated by the adjoint process.

There is a close interrelationship between the adjoint solution and the
importance of sampling in the direct simulation. This leads to interesting
possibilities such as using approximate methods or a simplified process to cal-
culate the adjoint, then using the adjoint solution to generate importance
sampling for a full simulation of the direct equations. Another alternative
is a form of sequential calculation where direct and adjoint solutions alternate
with each solution serving as the importance function for sampling the next
solution.

85



L

As with many of the more powerful variance reduction techniques,
the adjoint has been exploited very successfully in the area of raaiation trans-
port. This was possible due to the formulation of the radiation transport
problem in a precise (although difficult to solve) linear integral equation where
an adjoint formulation could be easily established.

Unfortunately, in most Monte Carlo simulations such a compact
formulation is not generally available and furthermore would be difficult to
develop. However, the concept of the adjoint offers some intriguing possibili-
ties. For example, rather than tracing an individual history through the sys-
tem in a natural manner, (i.e., from start to finish) it is possible to trace
the individual from a final exit point to the starting position. As an example,
should an adjoint formulation be developed with respect to antisubmarine war-
fare application it would not simulate in a forward manner to determine events
that result in a submarine kill, but would rather start from a submarine kill
and trace backward through the simulation to determine what sequence of
events could have led up to the kill. Many other applications could be en-
visioned which could exploit the use of the adjoint cr backward formulation.
This technique must however await further development and use before it be-
comes a generally applicable method such as is found in importance sampling
or correlation.

3.3.4 Transformations(4’ 12, 34)

The transformation method is essentially a special form of importance
sampling. It differs from other types of importance sampling in that a priori
information about the process is formulated in a parametric, closed-form
representation which is then used to alter the sampling procedure by the
transformation. For example if an approximate, parametric representation
of the importance function is known, then a transformation can generate an
altered process where the important areas have greater probability and the

unimportast areas have low probability.



This method has been largely employed in radiation transport
calculations where the functions of interest frequently have an approxi-
mately exponential form. There an exponential transform generates an
altered process with a greatly reduced variance.

3.3.5 Conditional Monte Carlo'% 10 14,34)

If the particular problem being investigated is very complex in that
it deals with a complicated sample space or the probability density function
is difficult to select from, it may be possible to embed the given sample
space in a much larger space in which the desired density function appears
as a conditional probability. The larger space and its accompanying density
are chosen to be much simpler in definition although they involve more
variables. Simulation of the large problem can be much simpler than the
original complex problem, and, despite the added computation required to
calculate the conditional probabilities, the gain in efficiency can be quite
high. Furthermore, the added degrees of freedom gained by the added
variables and the choice of a space and density function in which to embed
the original problem can be utilized to secure additional variance reduction.

Despite the potential power of conditional Monte Carlo for solving
complex simulation problems, it has seen very little use. In large part this
is due to the creative leap needed to view the problem in a larger context and
to design the larger space in which to embed the problem. In addition, while
the theoretical basis for this technique has been developed, very little in the
way of practical examples or applications has been produced, and the method
is still not well understood.



PART Il
APPLICATION OF VARIANCE REDUCTION TECHNIQUES



4. SELECTION OF VARIANCE REDUCTION TECHNIQUES

Unless one is very familiar with the concepts of variance reduction,
the selection of a promising approach for a particular problem can cause
considerable difficulty due to the large number of possibilities available.
This section of the report will be directed toward aiding the analyst in selec-
tion and implementation of an appropriate variance reduction technique or
techniques. This is accomplished by way of a systematic precedure to:

e Define the problem information that can be used as a basis

to select an appropriate technique or techniques.

e Select the specific technique or techniques that should be
considered for a given problem.

e Provide basic guidelines to implement the selected procedure.
Each of these aspects are described in Sections 4.1 through 4.3 respectively.

There are several approaches to use the information of this part
with that of Part I. The first, and probably the most effective, is to review
hriefly the material in Part I and then proceed to defining the available
infrrmation on the problem, selecting the appropriate technique and proceed-
ing to its implementation. Alternately, the required information for selection
of the particular variance reduction technique could first be defined and the

procedure selected prior to reviewing the material in Part I.
4. i DEFINITION OF PROBLEM INFORMATION

The usefulness of variance reduction techniques is ultimately deter-
mined by how effectively known information about the problem is utilized.
Problem definition is thus of paramount importance. Before considering
variance reduction techniques, it is essential to characterize the aspects of
the problem that might indicate which techniques could be fruitfully applied. To
evaluate the uselulness of these methods for a particular problem, it is helpful
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to know the information defined in Table 4.1. Such information is not strictly
required as certain approaches (such as sequential sampling) can generate
useful information, but this is not generally accomplished without cost. Thus
prior information is highly desirable. The more that is known, the better

the ultimate results will be. This information will be used in conjunction with
the characteristics of the techniques described in the next section.

Consider item 1 in Table 4.1. Here it is required to clearly define
which parameters are to be estimated. This could include mean values, vari-
ances or probabilities. Fur‘hermore, if it is known that the problem is such
that sensitivity or perturbation studies are to be performed, it is important that
this be recognized at the outset. Additional information of significance in-
cludes the sequential nature of a problem, as well as identifying any input
conditions that are random variables.

Under the second item in Table 4. 1, the significance of integral
formulations for parameters to be estimated is pointed out. The importance
of integral formulations cannot be over-emphasized since it is this basic in-
tegra! structure which is used to understand almost every variance reduction
method. In addition to the analytical forms, the knowledge of various
expected values in the problem and the availability of simplified analyt-
ical expressions which are positively or negatively correlated with the
parameters whose expected values are being estimated can provide key
information as to the variance reduction approach to be finally implemented.

Next, identifying intermediate events or parameters which assume
significance relative to their importance, unimportance or insensitivity to
the problem outcomes can provide valuable information. A key ingredient for
improving the efficiency of multistage simulations is identification of variables
or outcomes in the problem that will probably lead to either important or un-
important outcomes of the final events. Finally, identifying those final outcomes



TABLE 4.1

Recommended Problem Information to be Defined Prior to Selecting
and Implementing Variance Reduction Techniques

Define nature of the problem relative to

e expected values (means, variances, probabilities, etc.) to be
estimated

e sensitivities, perturbations or variations of parameters of interest

® possible mathematical formulations (e.g., integral equations,
expected values, etc.)

e any sequential characteristics such as ludepondent paths, outcomes
dependent on intermediate steps, etc.

o input conditions which are random variables to be sampled

Identify portions of the problem or parameters to be estimated that can be

e expressed in an analytical form such as single or multidimensional
integrals, differential and/or integral equations

@ solved analytically, such as expected values, variances, probabilities,
etc.

® rcpresented by approximate, simplified positively correlated analy-
tical expressions

e represented by approximate, simplified negatively correlated
analytical representations

o established as relatively not important to final outcomes compared
to other aspects of the problem

Identify variables in the problem which

® are very important to the expected outcome

e are not expected to significantly impact the results

e over their range of variation have relatively little effect on the
problem

® are strongly correlated with other variables

Locate final events or outcomes of the problem which

e have very small probabilities

have very large probabilities

have outcomes relatively insensitive to problem parameters
have known probabilities of occurrence from intermediate stages
in the problem

are linear combinations of other events or random variables
have known correlation with other events or outcomes
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which occur with large or small probabilities, are insensitive to problem
parameters, have correlation with other events, or the final events which
have known probabilities of occurrence from intermediate stages will also
prove to be very useful in effectively reducing the variance.

It should also be recognized that, in general, variance reduction tech-
niques are aimed at reducing the variance of only one parameter or aspect
of the process being simulated. Using variance reduction techniques designed
for one parameter will usually reduce the effectiveness of the simulation to
cstimate other parameters. It is very important, therefore, to determine all
of the results which will be desired from the simulation before searching for
a technique to apply to a given situation. If several quantities are to be esti-
mated by the simulation, the selection of a variance reduction technique has
to be considered from the standpoint of all of these parameters. In many cir-
cumstances it may be beneficial (or even necessary) to implement a different
variance reduction technique for each parameter. This might be accomplished
in the extreme case by developing a different simulator for each parameter of

interest.
4.2 SELECTION OF VARIANCE REDUCTION TECHNIQUE(S)

A comprehensive summary of the variance reduction techniques considered
in Section 3 is shown in Table 4.2. Here, each alternative is described briefly
along with the suggested criteria for application. In addition, advantages, dis-
advantages, and typical applications are noted. As will be seen many of these
techniques are interrelated, although their method of application may differ
substantially.

Also shown for each technique is the section numbers of this report in
which details of the approach can be found. The first section noted refers to
the material in Part I and the second references Part II. As may be seen
from a brief review of Table 4.2, there is substantial variation in the criteria
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to be used for selecting various techniques. This indicates, of course, the
importance of problem Qefinition and the value of known information prior to
selecting an approach.

The results of the information requirements defined as noted in
Table 4.1 can readily be used in conjunction with Table 4.2 to define a recom-
mended variance reduction approach. For example, if at a certain stage in
the problem it is known that a certain range of variables would not be of
interest to the final outcomes relative {o a second range of the variables, the
application of importance sampling or Russian Roulette and splitting is sug-
gested by Table 4.2. The next step would be to proceed to the sections
indicated.

A list of references which describe one or more of the various aspects
of each ~f these techniques is included in the corresponding section indicated
u Part I.

4.3 PROCEDURES FOR IMPLEMENTATION OF THE SELECTED VARIANCE
REDUCTION TECHNIQUES

This section presents general guidelines to implement the more im-
portant variance reduction techniques. For convenience, the order in which
the methods were presented in Part I will be followed here. It is recommended
that the material presented here be used in conjunction with that presented in
the corresponding section of Part I. Specifically, the implementation guide-
lines are presented in the following subsections:

History Reanalysis
Control Variates
Antithetic Variates
Regression

- o

4.3.1 Importance Sampling
4.3.2 Russian Roulette and Splitting
4.3.3 Systematic Sampling
4.3.4 Stratified Sampling
4.3.5 Expected Value

4.3.6 Statistical Estimation
4,3.7 Correlated Sampling
4.3.8

4.3.9

4.3.1

4,3.1
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No procedures are presented for implementation of the specialized techniques
(sequential sampling, orthonormal functions, adjoint method, transformations
and conditional Monte Carlo) presented in Section 3. 4 since these are not con-

sidered to be well enough developed for general application.

It should be mentioned that the material presented here is intended as
a basic guide to provide general procedures for implementation of the variance
reduction technique selected from Table 4.2. In many cases, it is difficult
to provide anything more than a rather general description of the steps to be
implemented. Ylowtver, where possible specific formulae or recipes which
have general applicability were included. The specific analytical formulae
of interest are also summarized in Appendix A.

4.3.1 Importance Sampling

Importance sampling is the term for modifying the sampling procedure
in a manner ‘hat will tend to emphasize the more important aspects of the
problem. TLe results must be corrected to account for this modification.

importance sampling is, in many cases, necessary for obtaining a
reasonable answer and, in other cases, can give outstanding improvements in
efficiency. This is particularly true when very small probability events can
contribute significantly to the outcome of the problem.

One danger with the application of importance sampling is that it can
lead to results worse than that obtained using straightforward sampling. Such
a situation can occur when the importance function is not carefully selected.
Furthermore, the method requires a fairly good understanding of the problem.

4.3.1.1 Implementation Guidelines for Importance Sampling

The general considerations that should be followed in application of
importance sampling are as follows:
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1. Attempt to identify one random variable x for importance
sampling and its density function f(x). Express if possible
the expected value being estimated as

I= [g(x)f(x)dx (4. 1)

2. Determine the functional form of g(x). This may be known
analytically in trivial cases. In complex simulations, it
may be possible to input selected values of x (not necessarily
from f(x)) and actually obtain an estimate for the form of g(x).

3. Plot the shape of f(x)g(x) and select an imporiance function
f*(x) that is "similar" in form to g(x)f(x). A sketch of the
basic ideas involved is shown in Fig. 4.1.

NOTE: Select f*(x) to approximate
g(x)f(x)

Fig. 4.1. Qualitative Description of Importance Sampling
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4. The new estimator for I is

N gXM(X)

i=1
where Xl, cee ,Xn is a random sample from f*(x).
5. The estimator for the sample variance is given by
N 2
N-1| N X 1 :

L i=1

6. Obtain a random sample X,,... ,Xxl using crude Monte
Carlo from f(x) and estimlte I1 nd S1 .

7. Obtain an estimate for the efficiency of importance sampling

using
2
S '9511 (4. 4)
48

where t. and t are the times required to obtain N samples
with and’\vithout importance sampling respectively.

It should be noted that ¢ is a random variable and is subject to
uncertainty which will depend on the sample size N. Thus, it is usually
a good practice to make N as large as reasonably possible to obtain a
good estimate for ¢. Inthe event several random variables ai-e invclved

m the problem, the suggested procedure is:

1. Identify one random variable x for importance sampling
and express the estimator as

r T [ elx, TR Y lax (4.5)

where the vector y is all the remaining random variables.
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2. For arange of values of x, estimate E[g (x,ﬂx)] where ¥
are selected from their corresponding probabi}}ty distribu-
tions. If yl, 30 ,y are random samples of y, then

n
22, yho) = % Z sz(x,ir'iho (4.6)
i=1

is used to estimate E[gz(x,ﬂx)] .

3. Select {*(x) to approximate

(B[ (x, y|]
(This can sometimes be accomplished graphically.)

4, Estimators with importance sampling are now respectively

N
g(X,, ¥ M(X,)
‘Il = ﬁ z—-—f;(xp—— (4.7)
i=1
and
(X, ¥)1( ’
2 N |1 BIX, Y HX) 1 .o
s = ‘I (4'8)
1" NI N g TX) 1

The efficiency is computed in the same manner as in the previous case

4.3.2 Russian Ro:lette and Splitting

Russian Roulette and splitting is a powerful technique that is easiest
to apply when the problem is characterized by a series of events. Examples
are found in problems in queueing, series subsystems, radiation trans-
port, random walk, etc.
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This technique is in essence a simplified form of importance
sampling. One potential difficulty with Russian Roulette and splitting is
the possibility that it may lead to a large number of histories being traced
through the system at one time. While Russian Roulette is generally easy
to implement, incorporating splitting, (especially in an existing program),
may be more difficult due to the need to store problem conditions and later
'restart' in mid-history. Following a 'split’', the program must continue
with the simulation of one of the histories until it terminates, and the
program must then go back to the point of the split and restore the
program conditions at that time so that the next 'daughter' simulation
can proceed.

The general steps that can be followed for Russian Roulette and

splitting are:

1. Identify stages in the problem for which the possible conditions
at those stages can be divided into regions RI’RZ' cee ,RN
such that all the points in any one region have roughly the
same importance.

2. Choose average weight standards, wp., i =1, N, for each
region that are inversely proportional to that region's im-
portance. The mean weight standard at any stage should be
roughly the average weight expected to reach that stage from
the previous stage.

3. If no other variance reduction techniques are being employed,
set high and low weight standards, wy. and wy., equalto
the average, wp.. If there are other \;ariance rLduction tech-
niques in use whiLh are causing weight changes, then wy. and
wr,; should be spaced sufficiently far above and below wAi 80
that there is no unnecessary Russian Roulette and splitting but
also so that there is not a wide variation of weights among his-
tories of roughly the same importance.

4. Whenever a history arrives at a particular stage in region
Ri with a weight w, carry out the following manipulations:
a. If wg WLy play Russian Roulette:

i. Kill (terminate) the history with probability 1 - Tv!A- , O
i
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ii. Let the history survive (continue) carrying a new
weight w A with probability w/w Ay

b. U W, <W< wﬂi , continue the history with weight w.
i

c. f w >WHi , carry out splitting:

i. Determine n such that 0 sw-nwp <wAi
ii. Split the history into n 'daughter histories which
start at this point with weight w A
W-NWA

iii. With probability . create one more daughter

i
history with weight w Ai -

5. In scoring, accumulate the outcomes from all daughter his-
tories which originated from the same initial or parent history.
That is, form estimates

“tj - Eg(i;)wl (4.9)
1, daughter of §

6. Form the final estimate by averaging estimates from N
starting histories

"~

! (4. 10)
and calculate the sample variance:
2 N 1 d 2 ~2
S cFi|W j_llj - (4.11)

4, 3.3 Systematic Sampling

There are two ways to implement systematic sampling. Both are
presented below although it is generally recommended that Method II be
used. The application of systematic sampling can be generally most ef-
fective when initial conditions for a problem are selected from a probability
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distribution, although other applications can be identified. In any event
it is convenient to consider the usual integral form

+0
1 .= / g(x)f(x)dx (4.12)

-l

Method 1
In this method, systematic sampling is implemented as follows:
1. The cumulative distribution for f(x) is determined as indicated
in Fig. 4.2. The range (0,1) is divided into N intervals, each
of width 1/N as indicated. N should vary between 5 and 50.

2. A random sample Rl’ ... Ry of size n is selected from the
uniform distribution U(0, 1).

3. Using the sequence, Rl, oo ’Rn’ n numbers are allocated to
each interval using.

j-Ri i=1,...,n 4.13
Ry = R ° j=1,..., N (4.1
4. Determine the values of xij from
ij i=1,..., n (4.14
Ry =) _ f@®ax 5 4 N '
T T T T T T ==
X
F(X) =f {(x)dx
= B

.__El__.ljﬁ. ces L IN
Fig. 4.2. Systematic Sampling 105
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5. Once the values for xij are obtained, the estimator used for
lis

n N n
i- %‘E 3 X, - L Y, (4.15)

i=1 j=1 i=1
where

N

- ow ) ey (4.19
j=1

6. Estimate the sample variance using
n
g . B %iz;“xf-“lz (4.17

Method II
In this method, the sampling i8 structured as follows:
1. The cumulative distribution for f(x) s determined as indicated
in Fig. 4.2. The range (0, 1) is divided into N intervals,
each of width 1/N. N should vary between 5 and 50.

2. n setsof N random numbers each, Ryq,...,RyN;...;

Ryys--- Ry are selected from U(0, 1).
3. n random numbers are allocated to each interval according
to
i-R -
v ij . i=1,...,n
Ry = w j=1,....,N (4.18)

4, The values of xij are determined from

xij

-0
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5. The estimator for the integral I is then obtained with

n N n
T- lmzl: jzlg(xﬁh %Ei‘ (4.20)
i= =

i=1
where
N
Y- § PILEN (4.21)
j=1
6. The estimate fcr the sample variance is obtained using
n
s? - n_“f’ Ly -izf (4.22)
i=1

It should be noted that the difference between Method II and Method I
is that the random numbers are generated independently in each of the N
intervals. This requires more effort than Method I, although Method IT
will generally give better resuilts.

4.3.4 Stratified Sampling

This variance reduction technique, sometimes called quota sampling,
is similar to systematic sampling in that specific numbers of samples are
generated in each of several intervals spanning the sample space. In sys-
tematic sampling the number of cases in each interval is determined from
the 'natural' proportions of the process being simulated. In stratified
sampling, on the other hand, the number of samples in each interval is
chosen to optimize the accuracy of the simulation.
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Stratified sampling can be implemented in the following steps:

1. Break the range of the random variable being simulated into

N intervals of length L,,... ’L‘% as indicated in Fig. 4. 3.
Typically N should be between > and 50. Each L, is
selected so the variation in g(x)f(x) is approximately the
same,

2. Determine Pj, the probability that x will be in the interval Lj,
from

P [ (@ix  §=1,...,n (4.23)
XGLj

T
J”Jﬁﬁm%
‘_L'l +Li+__1'3-_-l LR I-I—L--—4 .o |¢-—-—1H—-

X —sp

Fig. 4.3. Illustration of Systematic Sampling
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3. Arbitrarily assign n

j=1,...,N as the number of

]
samples to select fer each interval where In = n, the

total number of samples desired. Select

j=1,...,N from U(0,1).

4. Determine xi'j from

-1 xi'j
Ri'j Pj + P L = / f(x)dx

L= -

and determine

where

where n is the total sample size to be selected

Ri'j Yi=1,...,n;

(4.24)

(4.29)

(4.26)

(4.27)
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6. Select Rj ; i=nj'+l ,nj ; J=1,...,N from U(0,1)
and determine X ; i-n'+1 ,nj yi=1,...,Nfrom

2 /)( f(x)dx (4.28)

7. Estimate I and o using

i- i;p;lj (4. 29)

N 2 n

n 1 o 2 .2
Zif [‘nj"L“ Xy "j] (4. 30)
=1

i=1

where

"
1
,.—Z Xy (4.31)
i=1

The efficiency of stratified sampling can now be estimated using S2 as
determined in the last step.

If the

}
)

are known or can be estimated from a priori knowledge of the system being
simulated, then steps 3 and 4 can be omitted and nj can be determined
directly from

oF - 4 1 fow - 1,12 ax L
eL
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e

U I (4.33)

2; Pioj
j:

Alternatively, steps 3 through 5 can be performed iteratively to determine

a best'set of values for Ng,...y Dy

4.3.5 Expected Value

In any simulation consisting of several stages, it may !-e that the
expected value of some of the stages is either known or canbe determined
analytically. In such cases the possibility of achieving variance reduction
through replacing one of the random stages by 1*s expect:d value should be
investigated. The steps which must be taken to determine if replacement
by an expected value is feasible are:

1.

Identify the stochastic processes in the overall simulation for
which the expected value can be calculated efficiently.

For each stochastic process identified in 1., determine if the
random element in the process is an essential part of the
simulation model. If the fact that the process randomly takes
on a range of values affects the rest of the simulation, then
the process cannot be replaced by its mean value. If, on the
other hand, only the first moment of the random distribution,
and not any higher moments, affects the rest of the simulation,
then it is possible to replace the random process by its first
moment or expected value. For any given physical system,
the determination of which stochastic elements are essential
usually depends on the particular parameters being estimated.

If a random process can be replaced by its expected value
without loss of realism, that will always reduce the variice.
However, it may not improve efficiency as it may cause
excessive computation. If the process in question is a branch
point where the history may go in either of two (or more) direc-
tions, then replacing the stochastic event by its expected value
requires splitting the history with each part going in one of the
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directions and carrying the probability of that branch as a
weight. Should enough of these events be encountered the
number of split histories which must be computed can easily
expand beyond a reasonable bound. Alternatively, one of the
branches of the decision can be to terminate the history; in
this case the history is not split but continues from the
branch point with a weight representing the survival proba-
bility. This can easily lead to histories with very low weights
which usually represents a loss in efficiency in the calculation.
Again, this determination is likely to depend on the particular
parameters of interest in the calculation and it is impossible
to give general guidelines.

Figure 4. 4 shows, in abbreviated form, the considerations used

in choosing between expected value, statistical estimation, and crude

Monte Carlo techniques for the simulation of a random process.

Once the decision has been made to replace a stochastic process

by its expected value, the implementation depends on the role of the

process in the overall simulation. Specifically,
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1.

If the process is one of selection of a random variable, then
the process becomes merely a deterministic setting of the
variable to its expected value and the simulation proceeds as
before with no change in estimators, that is, if y is tc be
selected from f(y), then set

y = E[f(y)] (4.34)
and continue the simulation.

If the process represents a decision between terminating
or not terminating the history, then the history continues
but with a reduced weight representing the probability of
survival. That is,

Yhew = Yoid * Pg (4. 35)

where pg is the probability of survival (non-termination)
at the decision point and w4 and w;, ., are the weights of
the history before and after the replaced random process.

For any parameter being calculated, an estimate for each
history can be made by summing the contributions from that
history. That is,



Consider 2 Stochastic Process that is
Part ot a Simulation Process

l

Use Crude Monte Carlo

Can the Expected No

Value be C omp;xted Simulate the Stochastic Process
Analyticaily ? and Use Hit or Miss Estimators

lYes

Can the Process be Replaced
Nof by its Expected Value without

Loss of Necessary Stochastic

Detail in the Simulation?

lYos

Use Expected Value Technique

Is it Efficient to Replace the
Process by its Expected Value?

Replace Process with Expected
Value in Simulation and
Estimators

’1}10 ‘

Use Crude Monte Carlo

Can the Expected Value be
Used in Calculating Contri- No
butions to the final result?

Simulate the Stochastic Process
and Use Hit or Miss Estimators

lYes

Use Stauascal Estimation

Simulate the Stochastic Process
but Use Expected Value Estimator

Fig. 4.4 Problem Characteristics and the Choice of Crude Monte Carlo,
Expected Value, and Statistical Estimation Techniques
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“1i = Zwii g(X;) (4. 36)
j

where wi j is the weigut of the ith history at the time of the jth contribution
to the final result. Then the finzal estimate and the sample varianc> are
given by

1= x/ni;ii (1.37)

2 N N 2 &2

s = g (VN E :ii -1 (4. 38)
1=

If the contributions to a parameter from a history would have come

and

from the terminations in the process which was replaced by its expected
value, then the loss of weight at each such step is the proper estimate for
the expected terminations. In this case we get

4 = Z(wold, i) Vnew, i BXiy) = 20 Youg, 1y (1P 8K, (4.39)
i )
. th . .th
where j denotes the j occurrence of the replaced event in the i
history. The estimates for 1 and S2 remain as in (4.37) and (4. 38
above.

3. If the process represents a decision between two or more branch points,
then the history must be split and followed from that point on as two
separate histories, each taking a different branch and carrying a weight
equal to the probability of that branch. Parameters are estimated by sum-
ming weighted contributions from all daughter histories resulting from an
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original parent history, using formulas identical to (4. 36), (4. 37) and (4. 38).
In cases 2 and 3 above, histories may develop weights which are very small.
As this may entail spending a good deal of computing time calculating his-
tories that can make only a trivial contribution to the result, the efficiency
may be very low. To remedy this, Russian Roulette (see Section 4.1.2) can
be used to eliminate those histories where weights become too small.
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4,3.6 Statistical Estimation

It is not essential, and frequently not efficient, for a simulation of
a physical process to be carried out to the natural termination of the process
in estimating final outcomes. It is always proper to stop the simulation at
any point and to calculate through analytic or numerical means the expecta-
tion of reaching any final outcome. Indeed, the sooner the simulation is
stopped and the more analytic calculations are done, the lower the variance
will be. Obviously, however, the sooner the simulation is stopped, the more
complex and difficult the analytic calculations become and a point is quickly
reached where the overall efiiciency is less despite the gain in variance re-
duction. At the last step in the simulated process, the probability of reaching
the various final outcomes needs to be determined in order to do the simula-
tion. Thus, it is generally advantageous to use analytic expectations for the
final step. Whether the analytic calculations should be carried beyond the
final step will depend on the particular process and results desired, but
generally it is less efficient to use analytic expectations for more than the
last step.

If the process being simulated is a once-through process, i.e., the
final step can be reached only once each history, then the use of expected
outcomes is equivalent to the expected value technique. If the process is
iterative or repetitive with many passes through a branch point where a final
outcome is possible, there are two ways of using the analytic computations.
One is by the expected value technique as ou lined in the previous section.

The other is called statistical estimation and should be used whenever the
expected value technique would be inefficient. In certain cases where the
probability of the desired final outcome is extremely small, statistical estima-
tion may be the only way to obtain an answer. Figure 4. 4 shows, in abbrevi-
ated form, the considerations used in choosing between statistical estimation,
expected value, and crude Monte Carlo techniques for the simulation of a
stochastic process.
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Statistical estimation is implemented as follows:

l.

Identify the stochastic processes in the simulation which have
the desired final outcome as one pussible alternative.

Each time such a process is encountered in simulating a history,
a contribution of

g® , % (Y, IR) (4.40)

is scored, where g(X,y) is the function being integrated by the
simulatxon Ys is the desired outcome of the particular process
at hand, i denotes the current state of all the other variables

in the system, and f(¥ [X) is the conditional probability of obtain-
ing outcome Yjg given as the status of the system.

Do not modify the simulation itself, but continue to model the
stochastic process by drawing a random number and probabilis-
tically selecting an outcome, i.c., selecta Y from f(yR)

Do not mix statistical estimation with crude Monte Carlo, i.e.,
the outcome of Step 3 turns out to be Yg, no additional scori

is made. The contribution at this step remains g(X j,Y )f(Y |

Form an estimate for the entire history by summing the contri-
butions

i, 2 LR AL W (4.41)

where j runs over all occurrences of the particular process
being estimated in the ith history.

The final estimate is averaged over all histories

N
‘ii (4. 42)
i=1
and the sample variance is
2 N 1 L 2 42
FEs - -1 4,43
$° = 7ol ® Z‘Ii i°|. (4. 43)

i=1
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4.3.7 Correlated Sampling

Correlated sampling can be one of the most useful variance
reduction techniques due to the wide applicability of the technique as
well as to the large efficiency gains which can be realized.

There are several types of situations where the use of correlated
sampling is indicated. These include:

The effect of a small change in the system is to be calculated.

The difference in a parameter in two or more similar cases
is of more interest than absolute values in any one case.

e A parametric study of several problems is to be performed.
This has greatest potential when the problems are relatively
similar in nature.

e The answer to one of several similar problems is known
accurately. The answers to the unknown problems can often
be estimated from the known result.

The aim of correlated sampling is to produce a high positive cor-
relation between two similar simulations so that the variance of the dif-
ference in results is considerably smaller than it would be if the two simu-
lations were statistically independent. Unfortunately, there is no general
procedure that can be implemented in correlated sampling. However, the
following procedures can convey some notion of the methods useful in
producing correlation. Let us begin by considering two similar simulations
involving only a single variable, i.e., it is desired Lo estimate

A=1-1, (4.44)
where
+o
I = /_.. gl(x)fl(x)dx (4. 45)
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4+
Iy = I &y (¥)1y(y)dy (4. 46)

Then the implementation of correlated sampling proceeds as follows:

1. Generate a random sample X_,

., X from fl(x) and a
sample Y,,...,Y)y from fz(y])

t.x.sing
X, i
Ri --/ fl(x)dx = fz(y)dy ; 1=1,....,N (4.47)

where Ri ;i=1,...,N is a random sample from U(0, 1).

2. Estimate A using

N N
a-=3 (X) - go(Y)] = & A (4.48)
N gi [8,(X) - gy(¥)] = § i; i
where
Ai = gl(x‘) - gz(Yi) (4. 49)
Estimate the sample variance using
2 N 1 2 42
S=m{ngt\i-z§} (4. 50)

(Batching may also be used.)

I fl(x) is similar to fz(y), the random samples Xl, e ,XN
and Yl, ceee ’YN will be highly correlated. If gl(x) is also similar to gz(y)
then thg estimates will also be highly correlated. This will greatly reduce
the variance in A, as the history values, Ai’ will reflect almost totally

the real differences in gl(x)fl(x) and gz(y)fz()') and not random ''noise"
due to a difference in random numbers used.

gL R Ry -
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In the more general case the simulation involves a sequence of
-)
random variables x = XgrXgreeer Xy and the integrals being estimated are

1 =fomtoax= fff.. foxxy ... xR, ...
(4.51)
f(xk|x1x2, coos Xy _1)dX dXy, ..., dX,

and similarly for 12 The procedure now is as follows:

1. Identify, to the maximum extent possible, ~here identical
random numbers can be used on both problems. Clearly,
when parameters are changed between the problems, this
may not always be possible. However, it may be possible
to use the same uniform random numbers throughout. (In
sequential or multistage problems it may be possible to
precompute once the portions of the simulation which will
be identical in the two cases and then use these computations
in the two simulations, thereby reducing the computational
effort required.)

2. For each history i, generate a random sample Ryy,..., Ry
from the unit uniform distribution U(0,1). Solve }or
Xil' cens xik using

X
ij
R, - f fl(lexil,xiz, TEE® STRNL. S (4.52)

and for Yil’ coe ,Yik using

Y
ij
Ry - f fo(3y1¥4y Y90 Yy(g-1)%, (4.58)
3. Form an estimate for each history
A
Ai = gl(xil, xiz, s ’xik) - gz(Yil’Yiz)' so e ,Yik) (4. 54)

N A
=gy - Ly
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4. Calculate the final estimate by

- 1N.
A= N§A1

ara the sample variance

N
2 N 2*2 -2
§ = m l/N _lAi -A

(Alternatively, batching can be used to calculate the variance.)

In most practical problems one does not want to develop a completely
new simulator to estimate the difference in parameters but is rather faced
with the problem of using an existing simulator program which was designed
to solve a single case. Thus two separate runs must be made, but the cor-
relation generated in step 2 can be retained if the basic random sample
Rll’ Rlz’ 00 ,le, "21' . ’RNk is generated in both programs. Here
the property possessed by the congruential uniform random number gener-
ator of always producing the same sequence of numbers when given the same
starting value becomes very useful. It is then only necessary to ensure that
the two separate runs start with the same random value and they will con-
tinue to generate the same sequence Rll’ ‘e ’RNk' However, this is not
quite enough for most simulations. It is usually the case that k, the num-
ber of random variables in a history, is itself a random variable and can
vary from one simulation to the other due to the difference in the problem
solved. Thus, for the maximum correlation the random number generator
should be set at the start of each history to a value that is common in both
runs, i.e., force the values Rll’ sz Ral’ cos ’RNI to be the same in
both runs and all the rest of the random sequence will be identical in the
two cases. If step 1 identified portions of the simulation which could be
identical in the two cases, it would be desirable to force common starting
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values on the random number generator at the start of each such portion
of the simulation and not just at the start of the history.

To generate values Rll’ 821, R31, ceny RNl which are themselves
random numbers but are consistent in the two runs, a second random
number generator is used which does nothing but generate starting values
for the main random number generator Used in the simulation. As this
second generator is used only once each history, it is unaffected by the
difference in the two cases and will generate identical starting values in
both runs. (Note that one should use the binary integer produced by the
second generator and not the floating point random number as a starting
value for the main random number generator.)

Having made two separate runs which are correlated, the problem
then is to compute the difference estimates. To estimate the variance
produced by the correlation one must sape the estimates, il i and izi’ pro-
duced each history (or each batch, if batching is used), and then in a sep-
arate calculation obtain the estimated difference and the sample variance
from 4.54, 4.55, and 4. 56.

4.3.8 History Reanalysis

History reanalysis involves generating a series of histories for
one case and then reanalyzing them to generate an estimate for a similar
case. This combines the advantages of a saving in computer time with cor-
related sampling (Section 4.3. 7) since only one simulation was run to get
two results which are correlated due to the use of identical random numbers.

Basically, the types of problems to which history reanalysis can
be useful are a subset of those where correlated sampling is useful. That
is, when differences in similar problems are to be addressed or when
sensitivity analyses are to be performed (see Section 4.3.7). In addition,
it is necessary that the difference in the cases studied be expressable as a
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difference in the random distributions used or in the pay-off function,
g(x), and not be a difference in deterministic elements of the simulation.
It is commonly a sensitivity analysis where history reanalysis is likely
to be most effective.

As in the case of correlated sampling, there is no general pro-
cedure that can be followed in history reanalysis. However, the following
procedure illustrates the general principles used to derive the results for
one problem (Iz) from another problem (Il) where, as usual,

+
I = / g, (%), (x)dx (4.57)
and
+®
1, - [ B (XM (x)dx . (4. 58)

1. Generate a random sample Xl, 500 ,xN from fl(x).

2. Obtain an estimate for Il from

N (4.59)
- 2 &)
i=1
2
and for o, using
. N
N (1 2 2
§) = NTf{ Z gy (X)) "1} (4. 60)
i=1
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3. Obtain an estimate for I2 from

L £,(X) s
I = § 2 &%) Xy '

and for og from

: N it )] 2 2 (4.61)
Sy = W{N§[gz(xi’ x| 2} ’

The above procedure could clearly be used in the analysis of several
other integrals and also for the differences in integrals (as was the case used
for correlated sampling).

In problems of a sequential (or multistage) nature there may be several
points at which reanalysis of the original problem is performed in a manner
similar to that described above. Care must be taken however to avoid poten-
tial difficulties where branching decision, etc. are based on the outcome of
prior events in the problem. These must be appropriately accounted for, but
the general procedure outlined above can be useful.

For proper use of history reanalysis, fl (x) cannot be zero for any
point x where f2 (x) is not also zero. The converse, however, is not true.
In fact there is a large set of cases where history reanalysis is most useful

=f, (x) for x€ Rg
where gl(x) is the same as gz(x) and fz(x) {= for x£Ry' In this case

the "weights" used in calculating Iz, _;_2& , are either 1 or 0 and we have
1X1)
as a replacement for 4.61

- 1
I, = Z g4 (X,) 4,62
2 N2xieR2 174 iy

and as a sample variance

s Nyrj

s? - oo Y Px)-1
2 [Tz X,€R, 1% 2]
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where N, is the number of histories for which X;¢R,. As an exaniple of this
kind of case consider a simulation of an antisubmarine mission where the
problem is limited by the total mission time. It is desired to calculate kill
probabilities for a range of mission times. The simulation is run for the
longest time of interest, and the histories can then be reanalyzed to deter-
mine kill probabilities for shorter times by simply ignoring the kills which
occur after the time in question.

One worry in history reanalysis is that f4(x) may be too different
from fz(x) to do a reasonable job of estimating Iz. The result may be that
4.61 will prove to be an 'overbiased' or 'underbiased’' estimation. It is
recommended that users be aware of the considerations mentioned in
Section 2. 5 whenever using history reanalysis.

4.3.9 Control Variates

In the calculation of an integral

I= / g(x) f(x) dx, (4. 63)

if an approximate function, h(x) = g(x), can be found such that
0= f h(x) f(x) dx is known or can easily be determined analytically,

then the control variate technique should be used.

In this case the integral I may be written as

1= " h@fx)dx + [ [(g(x) - h(x) }f(x)dx (4. 84)

=0+ ff: [g(x) - h(x)}x)dx = 6 + Il
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Then, the simulation is nok performed on I directly, but rather on the expected
difference between g(x) and h(x), Il.

The procedure to follow in implementation of control variates is
straightforward. Namely,
1. Express the parameter or parameters to be estimated in integral
form as indicated above.

2. For each expected value, I, attempt to obtain an approximating
function h(x) whose expected value, 6, is known.

3. Structure the simulation such that the difference between h(x)
and g(x) given by

I = [70 [0 -h(x)]f(x)dx (4. 65)

is simulated.
4. Generate a random sample Xl. ce .XN from f(x) and estimate I

using 1
whose sample variance is given by

N -
8 -y | & 2 [e(x)-h(x) T - 1] (4.67)

Frequently, the real process being simulated will give clues as to
potential approximating functions. However in many cases an approximate
value for g(x) will not be available. This can sometimes be achieved by the use
of a sequential sampling procedure in which a few simulations are performed
to obtain an approximate representation to g(x). Clearly, the better the approx-
imation for g(x) that can be obtained, the better the results will be.

The extension of the control variate concept to multiple dimensional

integrals is clearly evident and is accompanied with the usual complications
associated with such extensions.
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4. 3.10 Antithetic Variates

When two estimators for a parameter of interest are known, then
it is possible to combine them to form a third estimator. If the two
original estimators are negatively correlated, then the combined esti-
mator can have a variance which is smaller than the variance of either
of the original estimators. The usual method for achieving negative cor-
relation is to manipulate the random number generation. Although there
are many different ways this can be achieved, the following formulation
(which uses a variation of stratified sampling) is very easy to implement.

1. Express, as usual, the parameter (or parameters) to be estimated
in integral form as

[= [0 exfx)dx (4.68)

2. Select a value for the parameter @'0 < a <1) and select X i and
X fori=1,...,N from

1
X {4. 69)
oR, = § __ f(x)dx -
and
- ; 4.70
1 -oR = f_a f(x)dx. ( )
where Ri; i=1,...,Nis a random sample from U(0, 1).
3. Construct the unbiased estimator 6 using
N
. 1 A 4.1
6= x 12—; ) (4.71)
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where

6‘i=ag(xi)+(1-a)g(xp;1=1,...,n (4.72)

with the sample variance
2 N |1 &2 22
g N (4.73)
i=1

Selection of an appropriate value for a is not always clear. One use
of antithetic variates uses a = 1/2. Another approach is to perform several
simulations for various values of a@ and estimate the efficiency as a function

of a.

4.3.11 Regression

The application of regression techniques to reduce variance in simula-
tions can be associated with problems in which a set of integrals Il, cees Ip
are to be estimated from a set of estimators 51, ces ,On(n 2 p) satisfying

. gﬂ:ﬂ 5,1
E1] = ° -RA E6) - & - (4. 74)

Ehpi' ['En]

where & is a known n x p matrix of the form

a

au.... 1p

(4. 75)

i
"

_anl. . oo anp

Based on the concept of minimum variance unbiased estimaitors, the following
procedure may be used to obtain an estimate for I using regression.
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1. Perform a simulation N times to obtain N values for each

61... .8 . Define these values as
k=1,...,N
%i‘i-1....n

2. Obtain the sample means

~ 1 X .
% = W k; &iii=1...,n (4.176)

and construct the matrix

o
fad .
) (4.77)
n
3. Estimate the covariance matrix
v v
11" " "1In
Vpgiee ¥
: 21-..- :n
v =] . (4.78)
i}nl"" nn
where
A g - -
V.. = 6,.-6,)(.-6);i=1,...,n
ij & ki i ij 1 (4.79)
j=1...,n
4. The unbiased estimator for'f is obtained from
5 omg 2 A 1A
] * -1 -
T=(r v1R1ATv-15 (4. 80)

ST . -
(A" is the transpose of A.)

Il is recommended that an estimate for the sample variance be
obtained by batching.
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APPENDIX A

SUMMARY OF ANALYTICAL EXPRESSIONS FOR
APPLICATION OF VARIANCE REDUCTION TECHNIQUES

A convenient summary of the basic expressions used in implement-
ing the more important variance reduction techniques is presented in Table
Al. For the most part the table is self explanatory. However, it ehould be
noted that all possibilities are not considered. For example, the results of

applying Russian Roulette and splitting \e shown for a two-stage problem
only.

Also it should be noted that the specialized techniques which were
introduced in Part I were not included here.
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REFERENCES AND ABSTRACTED BIBLIOGRAPHY

Bracken, J., McCormick, G.P., '"Selected Applications of
Non-Linear Programming, '' John Wiley & Sons, New York, 1968.

A book that presents several selected optimization problems. Of
particular interest here is the application of optimization methods
to selection of optimal strata for sampling in the sense of minimum
variance.

Burt, J.M. and M. B. Garman, '"Conditional Monte Carlo: A Simu-
lation Technique for Stochastic Network Analysis, "' Management
Science, 18, No. 3, 207-217, Nov. 1971.

This paper is concerned with a simulation procedure for estimating
the distribution functions of the time to complete stochastic networks.
The procedure, called conditional Monte Carlo, is shown to be sub-
stantially more efficient (in terms of the computational effort
required) than traditional simulation methods. The efficiency of con-
ditional Monte Carlo and its use in conjunction with other Monte Carlo
methods is illustiated for the Wheatstone bridge network. The
applicability of the procedure to larger networks, as well as other
stochastic systems, is discussed, and a general method is given for
its implementation.

Clark, C.E., "Importance Sampling in Monte Carlo Analyses, "
Operations Research, 603-620, Sept-Oct. 1961.

Some Monte Carlo analyses require hundreds of hours of high speed
computer time. Many problems of current interest cannot he handled
because the computer time required would be too great. Statistical
sampling procedures have been developed that greatly reduce the
required computer time. Importance sampling is one of these. This
paper is an elementary description of importance sampling as used
in Monte Carlo analyses.

Clark, F.H., "The Exponential Transform as an Importance Sampling
Device - A Review, " Oak Ridge National Laboratory (AEC) ORNL -
RSIC-14, 1-50, January 1966.

The exponential transform is reviewed, with emphasis on its use as a
guide to effective importance samplingin the solution of the Boltzmann
equation by Monte Carlo methods. Contributions of various workers
are assembled, along with numerical results. Special consideration is
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given to approximate forms and to effective practical methods.
Problems related to negative effective cross sections, tracking acrcss
discontinuities, directional biasing in inhomogeneous media, and high
variance in back-scattered components are specifically treated.

Conveyou, R.R., V.R. Cain and K.J. Yost, "Adjoint and Importance
in Monte Carlo Application, " Nuclear Science and Engineering, 27,
219-234, 1967.

The use of the Monte Carlo method for the study of deep :.enetration

of radiation into and through shields entails the use of sophisticated
methods of variance reduction to make such calculations economical

or even feasible. This paper presents an exposition of the most use-

ful methods of variance reduction. The exposition is unified by con-
sistent exploitation of adjoint formulations to estimate expected values,
as in previous work, and further to evaluate the variance of the resulting

estimates.

The connection between adjoint formulations and the choice of biasing
schemes is also investigated. In paxYcular, it is shown that the
value function (the solution of the integral equation of the adjoint
formulation) is always a good choice for importance function biasing;
a sharp upper bound, independent of the particular problem is found
for the resulting variance. Predicted (analytic) and experimental
(Monte Carlo) results are also given for a simple one-dimensional
problem.

DeGrott, M. H. and N. Starr, "Optimal Two-Stage Stratified Sampling, "
The Annals of Math. Statistics, 40, No. 2, 575-582, 1969.

This paper develops effective approximations to the optimal sampling
for situations where the total number of available observations is
large, and, therefore the optimal number of observations that should
be obtained at the first stage will also be large in a two strata popula-
tion where the sampling is accomplished in two stages. The techniques
can be extended to multistrata problems provided the observations at
each strata have a normal distribution.

Ehrenfeld, S. and S. Ben-Tuvia, ""The Efficiency of Statistical Simu-
lation Procedures, " Technometrics, 4, No. 2, 257-275, May, 1962.

Various methods for improving the efficiency of statistical simulation
of complex systems are described and illustrated for simple queueing
situations. The paper proposes that the efficiency and effectiveness
of statistical simulations can be increased through the adaptation of




experimental design principles which exploit any qualitative knowledge
surrounding the problem under study. Some techniques explored are
stratified sampling, sequential sampling, importance sampling and the
use of concomitant information.

Evans, D.H., "Applied Multiplex Sampling, '' Technometrics, Vol. 5,
No. 3. August 1963.

Muluglex sampling is an extension of standard Monte Carlo methods
for estimating characteristics of the distribution of a response when
the response is a function of several variables, each of which comes
from a known distribution. The extension is required when each
variable is available in a variety of distributions. Depending on the
number of variables there are many possible different combinations
each of which, in general, will give a different distribution to the
response. If characteristics of the response are to be estimated for
many or all of these combinations, there will be a plethora of Monte
Carlos to be performed if usual procedures are followed. This in
turn can require a great number of observations of the response; if
these are difficult to obtain, e.g., if they must be determined experi-
mentally, the carrying out of such a program can easily prove imprac-
ticable. Multiplex sampling is a method for estimating the character-
istics for all the different distributions for the response by using a
relatively small number of observations. This is accomplished by
sampling from an efficient sample space and then using weighted
sampling formulas. The functional form for the probability density
function describing this sample space 1§ derived in a companion paper;
here we assume this form and consider the practical aspects.

Fishman, G.S., "The Allocation of Computer Time in Comparing Sim-
ulation Experiments, " Operations Research, 16, 280-295, March-
April, 1968.

This paper investigates the problem of efficiently allocating computer
time between two simulation experiments when the objective is to make
a statistical comparison of means. For a given level of accuracy the
results show that significantly less computer time is required when
the sample sizes are determined according to a certain rule than when
the sample sizes are equal. A graphical analysis suggests that small
errors in estimating the population parameters of the allocation rule
do not significantly affect the efficient allocation of time. The influence
that the degree of autocorrelation has on the time allocation is also
investigated; results show that small differences in the autocorrelation
functions are important when each process is highly autocorrelated.
Positively correlated samples for the two experiments are examined
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and incorporated into the efficient allocation rule. It is shown that
their use leads to a saving in computer time. A two-stage procedure

is described wherein initial estimates of the population parameters

are computed which permit the experimenterto estimate how many
more observations to collect on each experiment. The procedure is
simple and straightforward to implement and should be of practical
value. When the computer time requirements turn out to be prohibitive,
we suggest using negatively correlated replications on each experiment.
This may be accomplished by using antithetic variates. The two-stage
procedure also applies in this case.

Garman, M.B., "More on Conditioned Sampling in the Simulation of
Stochastic Networks, "' Management Science, Vol. 17, No. 1,
September 1972.

The technique of conditioned sampling has been shown to improve
simulation efficiency in the estimation of stochastic activity network
duration. This paper describes a method for generalizing the condi-
tioned sampling approach from its current use of product-form
estimators to the use of product/convolution-form estimators. Esti-
mators of the latter type are constructed and demonstrated to require
fewer samples per realization (hence increased estimation accuracy)

in almost all networks. An algorithm for estimator construction is
presented and proven to apply to any given activity network. It is also
shown that the derived product-convolution-form estimators may require
a precedence structure within the sampling sequence which creates their
corresponding realizations.

Gaver, D.P. Jr., "Statistical Methods for Improving Simulation
Efficiency,' Carnegie-Mellon Universtiy, Pittsburgh, Pa., August 1969.
AD694445

The paper presents a variety of statistical devices for improving the
effectiveness of computer simulations of random processes. The
methods are illustrated by examples from a queueing problem that is
inadequately treated by analytical approaches.

Goertzel., G. and M. H. Kalos, '"Monte Carlo Methods in Transport
Problems, " Progress in Nuclear Science, Series I, Volume II,
Pergamon Press, p. 315-369.

The article is devoted to the discussion of the applications of the Monte
Carlo method in the field of nuclear energy. An account of the theory
is given, including preliminary material on random and pseudorandom
numbers and on choosing from probability distributions. The target
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game and the transport game are described in detail, with the
emphasis put on generality. The final section deals with specific
applications to some shielding and reactor core calculations.

Hague, J.F., '"Variance Reduction in the Monte Carlo Method for
Determining the Volume of Multidimensional Non Analytic Solids, "
Nuclear Instruments and Methods, 47, 194-200, 1967.

A Monte Carlo method for finding the volume of any definable object
located within a unit cube is considered. The method, which does

not require the surface of the solid to be described by an explicit
function, is developed into suitable program form and is tested for
"cylinders, spheres and pyramids in 2, 4 and 6 dimensions. Variance
reduction factors, over straightforward Monte Carlo, of up to 30 for

a 6-dimensional '"cylinder, " and 3 for a 6-dimensional "pyramid'’ are
obtained. An example is given of the application of the method to high
energy particle physics.

Hammersley, J.M. and D.C. Handscomb, Monte Carlo Methods,
Methuen & Co. Ltd. London, 1964,

One of the most useful references available today on Monte Carlo, it
presents the general Monte Carlo concepts and methods, techniques,
for generation of random numbers and applications to problems in

solution of linear equations, reactor shielding, statistical mechanics

flow in random: media (percolation processes) and multivariable systems.

Hartley, H.O. and J. R:o, '""Variance Estimation in Linear Models
Applied to Stratification Problems, " Biometrics, 23, 380, 1967.

It is well known that for sampling from finite populations with numerous
strata the allocation of one unit per stratum often results in highest
efficiency. On the other hand, it will not in general be possible to
obtain unbiased estimates of the variance of the stratified estimator.
Various solutions (including the so-called collapsing of strata into
pairs) have been tried but most of these are afflicted by an unknown
bias. The present approach uses a linear model which will usually
result in a considerable reduction of the bias in variance estimation.
The problem is reduced to the following general problem in variance
estimation for linear models. Given a familiar linear model y =X +e,
where the residual vector e consists of n independent elements with
mean vector 0 and the variance vector 2. If X is assumed to repre-
sent an x by k matrix the total number of unknown parameters is k + n
and these are clearly not estimable. However, if at least k linear
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restrictions are assumed to hold between the elements of 2 the problem

becomes estimable. For specific linear restrictions unbiased estimators

are derived. Specifically, the application to the above stratification

problem is discussed.

Householder, A.S. (Ed), ''Monte Carlo Methods, '' National Bureau
of Standards Applied Mathematics Series 12, June 1951.

Proceedings of a Symposivm held June 29, 30 and July 1, 1949 on
Monte C :rlo Methods. Papers included several Monte Carlo
applications and random number generation.

Irving, D.C., "The Adjoint Boltzmann Equation and Its Simulation
by Monte Carlo, ' ORNL-TM-2879, May 18, 1970.

The Boltzmann equation for neutron transport is discussed in both
integro-differential and integral form. The 'value' or 'importance’
equation is derived and shown to be equivalent, in the integral form,
to the adjoint of the collision density. However, the value is also
equivalent to the adjoint of the flux when the adjoint operation is
carried out on the integro-differential equations. Possible ways of
simulating both the forward and adjoint equations by Monte Carlo are
discussed. Because the value equation is a 'flux-like' equation, direct
simulation of it proves to be unwieldy. Instead, a 'collision density'
for adjoint particles, equal to the value or adjoint flux times the

total cross section, is introduced. The equation for this adjuncton
collision density may be simulated by the same routines as were used
for the forward calculation and only the cross sections need to be
changed. The extension of this to problems involving multiplying
media is also included.

Kahn, H. and A.W. Marshall, '""Methods of Reducing Sample Size in
Monte Carlo Computations, '* Operations Research, 1, 263-278, 1953,

This paper deals with the problem of increasing the efficiency of Monte
Carlo calculations. The methods of doing so permit one to reduce the
sample size required to produce estimates of a fixed level of accuracy
or, alternatively, to increase the accuracy of the estimates for a fixed
cost of computation. Few theorems are known with regard to optimal
sampling schemes, but several helpful ideas of very general applica-
bility are available for use in desiging Monte Carlo sampling schemes.
Three of these ideas are discussed and illustrated in simple cases.
These ideas are (1) correlation of samples, (2) importance, and

(3) statistical estimation.
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Kahn, H., "Modification of The Monte Carlo Method, "' The Rand
Corporation Publication.

The theory behind several useful variance reduction methods such as
importance sampling, sequential sampling, correlation, Russian
Roulette and splitting.

Kahn, H., "Applications of Monte Carlo, "' The Rand Corporation,
Santa Monica, Calif. AECU-3259, 1-250, 19 April 1954.

A classic report that provides a comprehensive and detailed survey
of random number generation and variance reduction techniques.
Several examples pertaining to the area of radiation transport are
presented to demonstrate the applicability of variance reduction.

Kalos, M.H.. "Monle Carlo Integration of the Adjoint Gamma-
Ray Transport Equation, Nuclear Science and Engineering; 33,
284-290 (1968).

The adjoint transport problem for gamma radiation is formulated and
prescriptions for its Monte Carlo solution are given. Emphasis is

put upon requirements for calculation of effects in shielding against
fallout and the differential effect of source position. Results are

given for two Situations: a detector three feet above a uniform infinite
source of 1.25-MeV photons, and another detector placed in an open
pit wich a similar source.

Karcher, R. H., '"Static Fault Trée¢ Analysis by Monte Carlo With
Some Results, " Homes & Narver, Inc., Sept. 1967.

In this paper a Monte Carlo method for evaluation of fault trees is
presented along with some results. Of particular interest is the
application of importance sampling for improvement of the sampling
efficiency.

Koop, J.C., "Short Communications on Splitting a Systematic Sample
for Variance Estimation, " The Annals of Math. Statistics 42, No. 3,
1084-1087, 1971. —

Variance estimation in systematic sampling by splitting the sample
into equal halves can lead to very serious bias. The expression for
this bias relative to the true variance is given in terms of intraclass
correlation coefficients. The danger of serious bias is still present
when successive pairs of units are treated as "independent' replicates;
an expression for this relative bias is also given.
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McGrath, E.J., "Fundamentals for Operations Research,' West Coast
University, 1970.

A graduate level text book which includes a chapter on Monte Carlo
simulation. Variance reduction techniques considered include sys-
tematic and stratified sampling, importance sampling and use of
control variates.

Moshman, J., ""The Application of Sequential Estimation to Computer
Simulation and Monte Carlo Procedures, " J. Assoc. Computing Mach.,
5, 343-3%2, 1968.

This paper considers a number of sequential techniques for estimating
the parameters of Gaussian and binomial populations. Some techniques
will be exact ones; others will have symptotic validity. In every case
it is possible by proper programming, and possibly some preliminary
analysis, to have the computer evaluate the sample obtained thus far
and determine whether additional samples are required to obtain some
specified precision. In some cases, the evaluation is made after each
sample unit; in other cases, evaluation takes place at certain intervals.

Nagel, P.M., "A Monte Carlo Method to Compute Fault Tree Probabil
Probabilities, '" System Safety Symposium, Seattle, Wash., June 8-9,
1965.

This report presents a discussion of the application of Monte Carlo
methods to the fault tree and demonstrates a methodology to reduce a
large simulation into a smaller simulation for application of impor-
tance sampling. A small fault tree example is analyzed to demonstrate
the technique.

Nilsson, G., 'Optimal Stratification According to the Method of Least
Sequences, "' Skandmavisk. Aklurarietidskuft, 1967, p. 128-136.

A method is presented that selects the optimal set of points of stratifi-
cation in the sense of minimum variance.

Page, E.S., "On Monte Carlo Methods in Congestion Problems: 1II.
Simulation of Queueing Systems, ' Operations Research, 13, 300-305,
March 1965.

In this paper the application of the antithetic variate technique to reduce
variance is shown to possess advantages in a simple queueing system
and its application to more complex situations is proposed.
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Pugh, E. L., '"Some Examples of Stochastic Distortion, a Monte Carlo
Technique, '' SP-1584, System Development Corp., Santa Monica,
Calif. March 6, 1564.

The effects of importance sampling on the variance of a Monte Carlo
estimation of tail probabilities is presented for both the exponential
and the gamma distributions. Also presented is the effect of the dis-
tortion on the required sample size for a desired accuracy-confidence

statement,

Pugh, E. L., "A Gradient Technique of Adaptive Monte Carlo, "
SP-1921/000/01, System Development Corp., Santa Monica, Calif.
Sept. 8, 1965.

A technique of Monte Carlo estimation is presented which is "adaptive'
in the sense that its efficiency increases as the sampling proceeds. It
is based on sequentially estimating the gradient of the variance and
following the path of steepest descent. The technique is applied to a
problem of estimating the survival probability of a repairable machine.

Relles, Daniel A., '""Variance Reduction Techniques for Monte Carlo
Samples from Students Distribution, "' Technometrics, Vol. 12, No. 3,
August 1970,

A Monte Carlo design is presented 1or estimating the variance and
cumulative distribution function of translation and scale invariant
statistics based on independent Student random variables. One obvious
application is studying estimates of the location parameter from a
symmetric, possibly long-tailed distribution. The method itself
amounts to suppressing some of the variability in the sampled objects
by integrating these objects over appropriate regions of the underlying
probability space. Indications are that, in cases of interest, the vari-
ability is thereby considerably reduced, as is illustrated in an applica-
tion concerning trimmed and Winsorized means.

Sarndal, C.E., "The Use of Stratification Variables in Estimation by
Proportional Stratified Sampling, "' Amer. Statistical Assoc. J., 63,
1310-1320, 1968.

This paper deals with proportional stratified sampling in the situation
where the estimation variable X is difficult and expensive to observe,

while the possible erroneous stratification variable Y is easy and
inexpensive to get at. The usually biased estimate
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is compared with the unbiased estimate

k
1b=Z_;Pixi,

where the P, are stratum weights and y; and x; are means of the units
sampled fro}n the i:th stratum. The two estimates are similar in that
they utilize information from only those population units that make up
the sample. While I, is the more inexpensive estimate, is usually
preferable if one judges by the size of the mean square error, which,
among other things, depends on the number of strata and the location of
the stratum boundaries. In particular, the properties of I_ and L are
discussed in connection with an example involving the bivaﬁate normal
distribution.

Serfling, R.J., "Approximately Optimal Stratification, '' Amer. Statis-
tical Assoc. J., 63, 1298-1309, 1968.

The cum { method of Dalenius and Hodges for approximately optimal
construction of strata is utilized to approximate the variance of the
stratified estimate, for estimation of the population mean of a random
variable Y by the technique of stratified random sampling. The approxi-
mation provides a basis for choosing optimally, for fixed cost, the num-
ber of strata to be constructed and the total sample size to be used. It
also facilitates other purposes, such as the comparison of optimal
stratification with optimal simple random sampling. The study is carried
out for the situations of stratification on the estimation variable and of
stratification on a covariable closely associated with the estimation

variable.

Shreider, Yu.A., '""The Monte Carlo Method, '' Pergamon Press,
1966.

A general Monte Carlo reference that addresses the general principles,
application of simulation to evaluation of definite integrals, neutron
physics, servicing processes, communications theory and generation
of random variables. A limited amount of material is presented on

the formal aspects of variance reduction.

Spanier, J., "An Analytic Approach to Variance Reduction, "' SIAM
J. Appl. Math., 18, No. 1, 172-190, January 1970.

This paper presents a study of the variance of the weight of particles
actually transmitted through slabs of various dimensions. Similar
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techniques may be used to study estimates of transmission which are
collision types, i.e., estimators which record, on every collision, the
probability of direct transmission on the next flight.

Spanier, J. and E. M. Gelbard, '"Monte Carlo Principles and Neutron
Transport Problems, "' 1-234, Addison-Wesley Publishing Co., Reading,

Mass. 1969.

A comprehensive reference presenting fundamentals of Monte Carlo,
discrete and continuous random walk processes, standard variance
reduction techniques and several applications to radiation transport

problems.

Van Slyke, R.M., "Monte Carlo Methods and the Pert Problem, "
Operations Research, 11, 839-860, 1963.

In this paper the results of a Monte Carlo simulation of PERT networks
are given. First the concept of using Monte Carlo methods to give solu-

tions to PERT problems under less restrictive assumptions is discussed.

Results are given for the accuracy obtainable, for the computer time
required and devices for reducing computational effort. Finally,
a "criticality” index is defined for each activity. This index is
~imply the probability that the activity will be on the critical path.
The ramifications and uses of this parameter, which are not available
using current techniques, are developed.
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